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This paper presents analytic formulas for the group velocity of quasilongitudinal, quasitransverse,
and shear-horizontallySH) polarized pure-transverse modes propagating in an arbitrary direction
on the symmetry planes of a stressed anisotropic elastic medium with orthotropic or higher
symmetry. The group velocity equations are expressed in terms of the thermodynamic elastic
stiffness coefficients and stresses acting on the medium. An example is provided ®dth silicon

crystal compressed at uniaxial stress. 1897 Acoustical Society of America.
[S0001-496607)00511-F

PACS numbers: 43.20.JANN]

INTRODUCTION (QL) and quasitransversé)(T) modes propagating on the
- ] . symmetry planes of the stressed medium. Our approach is

The group velocities of various modes of an elastic waveysically an extension of the methods used in Ref. 5 to the
propagating in an elastic anisotropic medium in the stresssiressed medium, replacing Christoffel’s tensor by the
free natural state have been extensively treated by manyguivalent acoustical tensor in the stressed state, where the
authors~3 Explicit analytic formulas for phase velocities in group velocity direction is again found to be normal to the
the symmetry direction and in an arbitrary direction of SYym-equivalent slowness surface in the stressed state.
metry planes are also given in the literatdre’ Because of The elastic waves emanating from their sources propa-
the complexity of the group velocity surfaces in an aniso-gate at the speed of group velocities which depend on the
tropic medium, no explicit analytic formula for the group gjrection of propagation in an anisotropic medium. Since the
velocity in a general direction exists. However, in the SYM-group velocity, just like the phase velocity, also depends on
metry directions, the phase and group velocities coincide anghe stress on the medium, the measurement of group velocity
this leads to valuable relations between the group veIocitynay yield information about the stresses acting on the me-
and elastic constants of the medium. Recently, the first awgjym. This effect, known as acoustoelasticityis generally
thor extended the group velocity expressions to an arbitrargmall in the moderate stress range below 1 GPa, and still
direction on the symmetry plarfeand Kimet al®°gave the  getectable if one measures the wave speed very accurately.
detailed treatment on the methods of determining all the e|asl=|owever, the change in group or phase velocity will be sig-
tic constants of an anisotropic medium from group velocitypificant in very high stresses, which can be found in the
data measured in symmetry directions and planes. Based Gfterior of planets such as the Earth and Jupiter and inside
the two-dimensional Stroh formalism for the elastodynamicihe diamond-anvil high-pressure cell in the laboratGry,
problems, Wanjgf gave an elegant treatment for the cusps Ofyyhere the stresses acting on a material may be much higher
the group velocity surfaces. than its Young’s modulus in the natural state. A study of

Equations of phase velocities at finite deformation of angroup velocity will contribute to the understanding of the

elastic medium under arbitrary stresses were formulated bycoustoelastic effect and the behavior of a material under
Toupin and Bernstefrt and Thurstort?** In the symmetry  high pressures.

directions of a stressed medium that maintains orthotropic or
higher symmetry, the group and phase velocities coincide
with each other, as in the case of an stress-free medium. Thi
gives relations between the group velocities of the pure modé
to the diagonal elements of the elastic constant matrix. How-
ever, to the authors’ knowledge, there appears no explicit Suppose that a small amplitude wave motiois super-
analytic formulation for the group velocity in an arbitrary posed on the finite deformation caused by static stresses
direction of symmetry planes. In this paper we derive theo;;(X) acting on the medium. We denote the coordinate of a
group velocity expressions for the shear-horizontaHj particle of a stressed elastic body at finite deformation state
polarized pure-transverseP{) modes, quasilongitudinal by X, which we adopt as a reference coordinate for deforma-

PHASE AND GROUP VELOCITIES, AND SLOWNESS
F A STRESSED MEDIUM: GENERAL
ORMULATION
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tion. The equation of motion for the deformationof a ho- ~ The group velocityVy, commonly defined as
mogeneous medium is written in the absence of body force

24112 Vy=V, o, (11
- azuk B azuk satisfies the relations
pxUi=[ 6k (X) + Cija (X)] X 3% = Biju X 3%, Vgn=V, Vg-s=1. (12)
(1) From Egs.(10) and(12) it can be shown that
where py is the material density & and B = ko (X) A
+ Cijii (X). Cijii(X), the thermodynamic elastic coefficient — Vs (13
evaluated a¥, is defined at constant entrof8/as 9 sV
9%U which indicates that the group velocity points in the direction
Ciji (X)=px m . 2 normal to the slowness surface, as in the case of the stress-
4 SiX free natural state. Note that Ed.3) holds valid for a stressed
In Eqg. (2), U is the internal energy per unit mass of the medium as a result df;=TI; in Eq. (7), Cjji # Cy;j not-
material, the strain from the reference stftés given by withstanding.

In the following we will restrict ourselves to the wave
&ij =3 ox Y ox T ax ax. 3 propagation with wave normallying in the symmetry plane
i | PO of a medium possessing orthotropic or higher symmetry,

and the thermodynamic coefficier@s (X) have a familiar ~ where the three axes of orthotropic symmetry are taken as
symmetry as the elastic stiffness constants defined in ththe coordinate axes{;, X,, and X3, whose directions are
stress-free natural state do. simply denoted ag100], [010], and [001], respectively.

However, the elastic coefficienB lack the full sym-  Likewise, we denote thX;X; plane whose normal points in
metry found inC;,,(X) and cannot be expressed using thethe X3 direction by(001), and analogously for th¥,X; and
abbreviated Voigt notation. We rearranBg,; and define a X;X3 planes. The orthotropic medium is characterized by
new set of wave propagation coefficiefgy, , which can be  nine thermodynamic, elastic-stiffness coefficieis;, Co,,
abbreviated using Voigt's notation. Following Huah@nd ~ Css, Ci2, Cz3, Ci3, Cass Css, andCeg, just as an ortho-
Born and Huand/ we write Ciju as rhombic medium in the stress-free natural state is. Here, we

—~ deal with only those media which possess three mutually

Ciji = (Bikji +Bij)/2= 8ijo+ (Cikji + Cux /2. (4 perpendicular symmetry planes, and therefore exclude mate-
Note thataijkl :’él_ikl andEijkl :Eijlk ' Eijkl obeys Huang’s rigls of tri.clinic, monoclinic, apd trigonal symmetries. A me-
condition dium, which has orthorhombic, tetragoridP2, 4nm, 42m,

_ _ _ _ and 4mmm classey cubic, hexagona(622, 6mm, 62m,
Cijki = Criij=C,—C, = 8jjow— b oij (5  and 6Mmmm classey transversely isotropic, or isotropic
where the subscripta and v (1,v=1,2,..,6) are the Voigt Symmetry in the stress-free natural state, can be considered
indices. The & 6 arrayaw, is shown in Table Il of Ref. 12 @S @ medium with orthotropic or higher symmetry, when it is

and has in general 26 linearly independent elements. Usinﬁn'ax'a"y' biaxially, or triaxially loaded with the directions

the C;j coefficients, the equation of motion is expressed aé)f the prlnC|p§I-stres§ axes comc_ldmg with those of ma_terlal
symmetry. This condition for maintenance of orthotropic or

1(¢9ui duj  dug aus)

.= J*u; higher symmetry can be stated as
pxUi=Ciji m (6)
k ! 012= 013~ 0'23:0 or 14
Writing the acoustical tensor as . (149
_ dXilda;=N\;é;; (i not summeg,
[ (n) = Cijinicny (7)

wherea; represents a coordinate of a particle along jtie

for the plane wave propagating with wave vectlr direction in the stress-free natural state ands a principal

=2mn/\, wave lengthy, wave normah, and phase velocity stretch in thei-th direction. Note that the symmetry relation

V, one obtains the phase velocity equations C,,=C,, holds for the medium in the natural state, while
~ Huang’s condition Eq(5) holds for a stressed medium.
(Cija Mk — pxV28;;)u;=0, 8 J e

deil’;; — pxV?5;;|=0. C)

I'j; is the symmetrical tensor whose eigenvectors are the po$- PHASE VELOCITIES OF A STRESSED MEDIUM
sible directions of particle displacement and whose eigenval-

ues are the corresponding valuespgi/2 Phase velocities in a stressed anisotropic medium are

In terms of slownesss=n/V=k/o defined as the in- treated in detail in Refs. 12—14. We introduce this section as

verse phase velocity, whetedenotes the angular frequency, a reference that is necessary for the derivation of group ve-

the slowness surfack of the stressed medium is representedlocmes to be presented in Sec. lll. For waves propagating on
by symmetry planes of an elastic medium, we choose specifi-

_ cally, without loss of generality, a wave normail
A =de{Cij ¢S — pxij| =0. (100  =[ny,0,h3]=[sin 6,0,cosd] lying on the (010 plane at an
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angled to the[001] direction. Because of the mirror symme- clV cl cw
. 11 66 55
try across thg0021) plane, we restrict the anglé to —90° 5 2 2) 2
< #=<90°. Wave propagations in thd00 and (001) sym- pxLVijl= Ces C22 Cuas
metry planes can be treated b)_/ the proper rotation of indices. cd cP cf
The acoustical tensork;; in the (010 plane can be ) o
found in Table Il of Ref. 12 by setting,=0 ando,,=0.  WhereVj; denotes the phase velocity propagating in Xge
Equation(9) for the wave propagation in t{@10) plane  direction and polarized in th&; direction. Equation(23)

, (23

yields indicates that all the pure-index or diagonal-element thermo-
) dynamic elastic coefficients can be determined from mea-
(T 22— pxVA[(T 11— px V) (L33~ pxV?) —T'15]=0. surements of the pure-mode phase velocities propagating in

(15  three symmetry directions. Note that the elastic constants
For simplicity of notation we introduce the following C11- @ndCss- appearing in Eq(22) can be similarly deter-

identities: mined using Eq(23), sinceCy;_=C{}) andCsy =C .
This means that the elastic coefficiddis, = C,3+ Css ap-
C11:=Cy1#Cs5, Cg3:.=C33%Csp, (16) pearing in Eq.(22) can also be determined from measure-

ments of theQL- or QT-mode phase velocity together with
the pure-mode phase velocities propagating in symmetry di-
for the pure-index, effective elastic coefficier@§), (u not  rections. Note also tha€;s;, =C{2, =C{3, and therefore,
summedu=1,2,...,6, c(Y andC{) in Eq. (18), which appear in the formulas of
the effective Young's modulus and Poisson’s ratios of a

C13: =C13* Css;

Clu=Cputoi (i not summed;=12,3); (17 stressed orthotropic mediutfi2® can also be similarly ob-
for mixed-index, effective elastic coefficien®(), (u+v;  tained from measurements of relevant pure- &id (or
w,v=123), QT-) mode phase velocities.

. Since the phase and group velocities are identical for

C\)=C,,—oy (i not summed;=1,2,3); (18  waves propagating along the symmetry directions, [28)

also applies for the pure-mode group velocity by simply re-

and for the following effective elastic-stiffness constants placing V/;; by (Vy);;. On the other hand, along an off-

cl =cP+cd, cii=c+cd, symmetry direction on the symmetry plane, the direction of
- B (19 the group velocity deviates from that of the wave normal,
ca.=cy+cd, cP.=cP=cd. and in the following section we deal with the derivation of

the group velocity formulas and their application to determi-
nation of the group velocity surfaces and the mixed-index
elastic coefficients.

The first term in the parenthesis of E{.5 represents
the pure-transverseP(T) mode polarized in th€010] direc-
tion and propagating with phase velocity

pxV2=T,,=Ci sir +C{J co€ 6 (PT mode.

(20
The square bracket term in E@L5) yields the phase veloci- |, GrouP VELOCITIES OF A STRESSED MEDIUM
ties for the quasilongitudinal L) and quasitransverse
(QT) modes propagating on th@10 plane and polarized The group velocity corresponding to a wave normal
on the same plane: =[sin 6,0,cosé] in the (010 slowness plane can be calcu-

V22— (T +T V2)+ (T4 Ta—T2)=0, (21 lated using Eq(13). Because of the mirror symmetry across
(PxV)"= (Faat Taa) (pxVA) + (Tual s~ T3 ) the (0100 symmetry plane, all the points in tHe10) slow-

2pxV2=T 11+ T35+ [(T 11— T332+ 4T3,]2 ness plane map onto tH@10 plane of the group-velocity
O - surface. However, except for isotropic and transversely iso-
=Cj7. sinf 9+Cg3, cos 6 tropic media, the converse is not generally true, as is well

known in the theory of phonon focusifg?! Because of the
nonspherical, concave, or convex shape of@leslowness
+4C3,, sir? 0 cog ]2, (22)  surface of an anisotropic medium, some points that do not lie
in the (010 section of theQT slowness surface may map
onto the (010 group-velocity section. The group-velocity

+[(Cyy- Sir? —Cgs coOS 6)?

where+ and — signs in front of the square bracket refer to

the QL andQT modes, respectively. o sections that do not correspond to 8.0 slowness plane
Equations(20) and (22) express the phase velocities of 50 ot of interest here. Hence, we deal with only those

various modes propagating in an arbitrary direction on they 5 velocity sections that correspond to tB20) slowness
(010 symmetry plane of a stressed medium. Similar expresmane_ We denote the direction of group velocity by an angle

sions can be found for the other symmetry plari@8() and  , neasured to th&001] direction. Because of the mirror
(001), by an appropriate rotation of indices for the elastic

. I=Hsymmetry across thé01) plane, we confing to —90°</¢
constants and stresses. In particular, for the pure-longﬂudmi

A £90°, just as#. For simplicity of notation we write
and pure-transverse modes propagating in the symmetry di-
rections, one can easily find in matrix form p=tan#, g=tan(. (24)

3335 J. Acoust. Soc. Am., Vol. 102, No. 6, December 1997 Kim et al.: Group velocity of a stressed solid 3335



A. Pure-transverse mode

Equation(20) yields the equation of thé10 slowness
section of the pure-transverse mode

Apr=Cs?+C¥s5— py=0, (25)
pxS3 *=Cegp+Cl . (26)
Applying Eq. (13) to Egs.(25) and(26), one obtains

Vg1=55C8'p/px (278
Vg3=55C5/ px. (27b

Vy; Cep

_ ‘gl _ 66

q=tan{= Vg3 C(3) ) (28@

Ciiq
p=tan o c (28b)
(pxV5) '=[px(Vi+V5a)] "

=(Ct)tsir? (+(CE)tcos ¢ (29

Equations(28a and (28b) give the conversion relations be-

tween the directions of phase and group velocities of the

SHpolarized PT mode. Equatid29) indicates the elliptical
section ofV, with the principal semiaxes given hﬁg‘?/px

and \ C66 /px

B. Quasilongitudinal and quasitransverse modes

We again introduce for simplicity of notation

A=Ciyci+clcg -y, (30
B=Cy; Cs3-— 2C53+ = C(lll)—c(ssé)— 2C13+ (133)+ . (31

D= —2 [(T13—Tg9)?+4T 5]

3

=[(Cyy-p*—Caz-)?+4CE3, p*]2, (32
F=C{/Cl/si+CRCsi+AsTss, (33
G=px(ClY,si+C,s)), (34)
U;=2C1/C/p®+ A~ pxs; °Ci7. , (39
Us=2CEICE) + Ap2— pys; 2C3. | (36)
Q=CHi, p?+C. —2pxs; %, (37)

where the quantity;xsg2
expressed as

can be obtained from E@22) and

(1)

2pys; 2=C{Y, p?+CY), +D. (39)

The positive and negative signs in front Bf in Eq. (38
correspond to th&@L and QT modes, respectivel\D is by
definition always greater than zero in an anisotropic medium.
Substitution of Eq(38) into Eqg. (37) yields the identity

Q==D, (39

3336 J. Acoust. Soc. Am., Vol. 102, No. 6, December 1997

where the negative and positive signs correspond tdxhe
andQT modes, respectivelyB in Eq.(31) andD in Eq.(32)
are related by

1 4 2

202 (C%,_p*+C3;_—D?). (40
The group velocities of both th@L andQT modes can

be found analytically from the equation of the slowness sur-
face, which can be derived from E@1) as

A=F—G+p3=0, (41)

whereF andG, specified by Eqs(33) and(34), are respec-
tively homogeneous functions of degree 4 and 2.itUsing
Euler's theorem on a homogeneous function, it is easy to
show that

s- VA =4F—2G=2(G—2p%) =2pyxs3Q. (42)
From Eq.(13) one obtains
gl:zlx_UQl! gSZ?X_L(J;a (43
gq=tan{= zz; :3; = UU—l: (44)
pxV5= px(V51+Vig) = %?Qif. (45)

To proceed further, we first consider tig. mode and then
the QT mode.

1. Quasilongitudinal mode

For theQL-mode propagation the upper sign in front of
Egs.(38) and(39) applies to Eqs(35—(37), (44), and(45).
After some algebralJ, andU;3 in Eq. (44) reduce to

U,=(B- cll p2— (111)+D)/2, (46)

Substitution of Eqs(46) and (47) into Eq. (44) leads to the
following relationship

p(B—C,_p>-Ci,D) .
Bp?—C3 —C3\D
which can also be expressed in the form of
Ciy p*+a(Bp*~C3; ) —Bp+(Cit,p- 33+q)D( 0)
49

Equation(48) or (49) can be used to find the direction of a
wave normalp corresponding to that of a group velocity
lying in the (010 plane and vice versa, when the relevant
values of thermodynamic elastic coefficients and stresses ex-
erted in @ medium are known. Substituting E40) into Eq.

(49) and rearranging the resulting equation in terms of pow-
ers inD, one obtains

(1-pg)D2—2p(CY,q—CT, p)D+(1+pq)

X (C%,_p* C33_)=O, (50)

which yields

Kim et al.: Group velocity of a stressed solid 3336



D= 7= g (P(C53La— Cilp) = [P*(C53a— Cii p)?

—(1-p%g?)(C%_p*-C3 )13, (51)

For a given group directiom in the above equation, we

choose the region op which makesD real and positive.
Finally, from Egs.(38)—(40), (47), and(45), one obtains the
expression for the group velocity

(1+0?)[C},_p*~C3_ —D(D+2CH,)1?

2__
8D2(C{Y, p?+C5, +D)

pXVg

(52

transducer or a laser interferometer. Detailed discussion on
the group velocity of th&€L andQT modes and its applica-
tion to determination of elastic constants in nonacoustoelas-
tic case ¢;;=0) is provided in Refs. 5-8.

C. Extension to higher-symmetry media

1. Stressed tetratropic medium

A material of cubic symmetry of 432,_3m, andm3m
classes behaves similar to but not exactly as one of tetrago-

~ The above equation can be used in combination withhal symmetry, when the material is stressed in three cubic-
either Eq.(49) or Eq.(51). The former case applies when the axes directions with two equal biaxial stresses or when it is
relevantC;; and stresses acting in a medium are known. Fo{njaxially loaded along a cubic-axis direction. We term here

a given group-velocity directiog=tan{, one uses Eq49)
to find p; Eq.(32) to calculateD; and then Eq(52) to obtain

such stressed media as having tetratropic symmetry. The
Huang’s condition Eq(5) holds for tetratropic symmetry,

the group velpcity. The latter case applies to an inverse apyhile Eijkl =C,y;; for tetragonal symmetry. This means that
proach by whichCy3, can be found from the measured val- tetragonal symmetry is maintained only when hydrostatic

ues of a group velocity/q for the given directiorg, C(llll ,
Ci, C§)., andCgy_ . As indicated by Eq(23), C{Y), ,

Cy =C, C8)., andCyy =C§) can be obtained from
measurements of the pure-mode wave speeds propagatingfiymed with three principal stresses;;=

the symmetry directions. Equatigh2), whenD in it is sub-
stituted by Eq/(51) with the known values o, Vg, C(lll)+ )

Ci, C§)., andCgyy_, becomes a function of single vari-

ablep, which can be solved for to find the values@£0,

B, andC,3, via Egs.(51), (40), and(31), respectively. This
in turn yields the value o€ 5 if the stresses;; andos; are

known.

2. Quasitransverse mode

In the propagation of th@ T mode, Eqs(38) and (39
are both determined with the lower sign in frontDf The

application of very similar procedures to those taken in th

QL mode yields
_ p(B—C%, p*+Ci7, D)
Bp’~C3; +Ci.D

(53

C2,_p*+q(Bp?—C%_)—Bp—(C{¥, p—C5,q)D=0,

(54)
D= 7= g (P(CiLi P~ C53l )= [P*(CLy, P~ Ce3.a)?
—(1-p?9?)(CF,_p*—C55)1"3, (55)
pV2_<1+q2>[cafp“—C§3f—D(D—2c<3%3+>]2 56
xVg™—

8D*(Ciy, p*+CL, —D)

The calculation of the group velocity for a given direction

pressures are applied to a material of tetragonal symmetry. A
medium of tetragonal symmetry of 422mn, 42m, and
4/mmm classes also behaves tetratropically when it is de-
(2] and 033 It

has a total of six thermodynamic elastic coefficients:

C11=Cp, Cz3, Cyy, (57)
C13=Cp3, Cys=Css, Ces,
where the direction of tetratropic symmetry is taken as the
X3 direction.

In a tetratropic material, th@10) plane is equivalent to
the (100 plane and the group velocities of thel, QL, and
QT modes propagating in these planes and (6l plane
are governed by those equations previously derived for
orthotropic material with the use of E¢b7) ando11=055.

n the {n,,n;,0}-type diagonal symmetry plane, where the

wave normal and group velocity propagate in ¢he,n;,nz)
direction at angle® and ¢ to the x5 direction, respectively,

nZ=n3=n32=sir? 6/2, ni+n3=1. (58)
Equation(9) is now factored as
(Fy=Tio— PVZ)[(F33_ PVZ)(F11+ I'yo— PV2) - 2F§3]

=0, (59
where

['11=(Ciy + Ceg)ng/2+ Ci/ns,

P~ Clind+C g -

I'15= (Cya+ Cee)Nyny=(CY + ClHnd/2,

and the determination of,;, from the relevant measure-
ments can be achieved in a way similar to those achieved in
the QL mode. However, the measurement of the group ve-

l_113: (C13+ C44)n]_n3: C13+ Ngns V2.

The first factor in parenthesis of E(9) yields the re-

locity of the QT mode is generally much more difficult than lation for the PT mode propagating on thfn,,n,,0}-type
that of the QL mode in the signal generated by a small, plane and polarized in thg,,n,,0) direction. Following the
pointlike source and detected by a small, pointlike piezoelecsimilar procedures as in Sec. Ill A, one finds exactly the
tric detector, except in the case of the signal detected by theame relations for th® T mode on the diagonal plane of a
noncontact displacement transducer such as a capacititetratropic medium by replacing{y) by (C{Y—C{})/2 in

3337 J. Acoust. Soc. Am., Vol. 102, No. 6, December 1997
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Egs.(20), (283, (28h), and(29). The PT-mode group veloc-
ity is then given by

(pxVg) ~t=[(CiY —CF)/2]~* sir? ¢
+(CE)tcog ¢ (PT mode. (61)

The terms in the square bracket of E§9) yield rela-

plane is a principal plane and any direction normal to the
zonal plane is also a principal-stress direction.

For the wave propagation in the zonal plane with wave
normaln and group velocity/ directed at angleg and{ to
the X5 symmetry axis, respectively, there is a one-to-one
correspondence between the directions of the wave normal
and the group velocity and all the points in the zonal slow-

tions for theQL and QT modes. Following the procedures ness plane map themselves onto the same zonal group-
similar to those in Sec. Il B of this paper and Sec. Il C of velocity plane. What holds for th@10) plane of the ortho-

Ref. 5, one finds that exactly the same relations betwggn
p=tané, g=tan{, C;;, andoyj; can be obtained for th@L
and QT modes in the corresponding Ed46)—(56) and the
defining Eqgs.(31) and (32) by simply replacing:Css by
Cas; C by C: Cc® by C; Cy by K; Cpype by K. ;

cV by K®; andclt), by K&, wherek, K., K&, and
K are now defined as
K=(C11+C15,+2Cq)/2, (6239
K.=K=Cyy. (62b)
KW=(Ccy+Cl+2CH)/2, (639
KP=k®+cll, (63b)

whereC{y, cl¥), c{}), andC{}) have previously been de-

tropic medium in Secs. Ill A and Il B also holds for the
zonal plane of a transversely isotropic medium with &)
and o 1,= 05, substituted in the appropriate relations.

For the wave propagation in tH@01) basal plane nor-
mal to the axis of transverse symmetry, all the propagation
directions are identical and principal symmetry directions.
All the phase velocities are of the pure mode and coincide
with group velocities of the pure mode. Their relations are
indicated by the first-row elements of E@3) with Eq. (67)
and o11= 0, and satisfied.

IV. GROUP-VELOCITY SECTIONS ILLUSTRATED
WITH A UNIAXIALLY LOADED SILICON CRYSTAL

In this section we illustrate the effect of stress on the

fined in Eqs.(17) and(18). The group-velocity and relevant group-velocity sections with a silicon crystal when it is

relations for theQL andQT modes are

K2p3+q(Bp?—C%_)—Bp=(KPp-CE,q)D=0, (64

D=1 g {=P(CE.A-KIp)=[p(Ci q-Kp)?

—(1-p*0?)(K2p*—C3;)1"3, 65
(1+q2)[K% 4—C2 7_D(Di2C(3) )]2

Px S: 33 33+ 66

8D4(K'Mp?+C§}, =D)
In Egs.(64)—(66) above, the upper and lower signs in bdth

and = apply to theQL andQT modes, respectively, except

for the = sign in front of the square bracket in E(5),
which applies to boti@QL andQT modes. Note thaB andD
in Egs. (64)—(66) are respectively defined by Eg81) and
(32), whereC,;_=C{)_is now replaced by _=K®.

2. Stressed transversely isotropic medium

uniaxially compressed in the direction that coincides with a
cubic-axis direction of the crystal in the stress-free_natural
state. We will take, as an example, tl@l0 and (110)
group-velocity sections when the silicon crystal is com-
pressed normal to th@01) plane ato;;=—1 GPa with all
other stress components being zero. As mentioned in Sec.
IIl C 1, the silicon crystal in this case behaves tetratropically
and it has six thermodynamic elastic coefficie@s,, as
indicated by Eq.57). They are related to the second- and
third-order elastic constants referred to the coordinates of the
stress-free natural states'B¢?

Px &X, &XJ (9Xk &X|

Px 0"X| (9Xl &Xk 07X|
= P_ Ja. da. da. Ja [Cpqrs(a)+cpqrsmr(a) Mmn
a 0dp 0dg oa, s

+...], (68)

wherea denotes a coordinate of a particle in the stress-free
natural statecg'qrs(X) is the thermodynamic elastic coeffi-

An isotropic medium at the natural state behaves as
transversely isotropic medium when it is loaded in three ar

bitrarily chosen, mutually perpendicular directions with tWo 54 third-order elastic constants, which are both referred to
equal biaxial stresses, say ;= 0,,. The case ofr;=09, and evaluated at the natural stateand
=0 is common in uniaxial tension or compression tests. In a

ient that is referred to the natural state and evaluated at the
initial stateX, cpqrs(@) andcyqsmd@) are the second-order

transversely isotropic medium there are five independent _[L}|Um  dun  dus dug 69)
thermodynamic elastic coefficients: Imn=1 2 da, da, danyda,
C11=Cy, Cz3, Cyp, Cy3=Cyg3, is a finite strain referred to the natural state.

(67)

Coars(@) for cubic silicon aré c;,=165.7 GPa,c;,
Cas=Css,  Coo=(Cri=C1d/2. =63.quPa, anct,,=79.56 GPa. Its density at the natural
Any plane parallel to the axis of transverse symmetry isstate isp,=2332 kg/mi. Using these values of the second-
called a zonal plane and all the zonal planes are identicabrder elastic constants and the density evaluated at the natu-
There is no distinction between tH810- and {110-type ral state, thg010 and(110) group-velocity sections of sili-
planes, which are all identical to the zonal plane. Any zonakon are plotted with solid lines in Figs. 1 and 2, respectively.
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FIG. 1. The(010 group-velocity sections of silicon at natural state and at FIG. 2. The(110) group-velocity sections of silicon at natural state and at
o35=—1 GPa:(a) global view; (b) expanded view of the transverse group- oz3=—1 GPa:(a) global view;(b) expanded view of the transverse group-
velocity sections near thE)01] direction; and(c) expanded view of the velocity sections near thg001] direction; and(c) expanded view of the
transverse group-velocity sections near [the0] direction. transverse group-velocity sections near [th&0] direction.

€111= C220=C333, C144= C255= C3g6: C112= C223= C133~ C113
The third-order elastic constarts, sm{@) of silicon, evalu-  =C15,=Cz33, C155= Cpa4= C344= C166= C266= C355 fOr cubic
ated in the natural state, are?* c,;,;=—795GPa,cqq, silicon, Cjj atos=—1 GPa are calculated according to Eq.
= —445 GPa, c1,5= — 75 GPa, c144=15 GPa, c155= —310  (68) to yield: C;;=C,,=168.51 GPa, C3;=165.31 GPa,
GPa, andc,s6= — 86 GPa. Using the values of the second-C4,=Cs5=80.70 GPa, Cg=79.06 GPa, C,,=63.32 GPa,
order and third-order elastic constants of silicon and theand C;3=C,3=65.72 GPa. The densityy= 2340 kg/n? is
identity relations between the third-order elastic constantsobtained atr33= —1 GPa. Using these thermodynamic elas-
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tic coefficientsC,,, obtained airz;= —1 GPa, the010 and ~ horizonta) types. Under a stressy, acting, these two modes
(110) group-velocity sections of silicon are also displayed inmterchange their role. It is well known in acoustoelasticity
Figs. 1 and 2, respectively, with dotted lines. The group-hat the difference between the wave speeds ofSikeand
velocity sections near tH@01] and[100] axes of these sym- SH types that propagate in t{&00] normal to the loading
metry planes, which correspond to the wave normals lying irfjlrecjuon is proportional tol4the difference between the two
nonsymmetry planes, are neither of interest here nor withiPfincipal stressesrsz—o,.™" _
the scope of this work and therefore not included in the fig- N the face-diagonal directiofi10] [see Fig. 2], the
ures. The group velocity of the longitudindl mode in the ~ group velocity of the=QT ray changes by 0.54% from 5.841
[001] and [100] directions is 8.429 mmis in the natural MM/us in the natural state to 5.873 m whegs= —1 GPa,
state. Undeirz3= — 1 GPa, the change in group velocity of While that of theSQT ray hardly changeg0.15% from
this mode is about-0.59% in the[001] loading direction, 828 mmks in the natural state to 5.837 m ats
while it is about 0.67% in thg100] transverse to the loading = —1 GPa. However, the change in the group velocity of the
direction. The group velocity of th€L mode at o= PT mod(_a is quite significant. It varies by 1.5% from 4.672
— 1 GPa varies from that in the natural state by 0.37% in thé"M/us in the natural state to 4.741 mms/ at o3
[101] direction, 45° away from the loading direction, while it =1 GPa. . .
changes minimally by-0.016% in the[110] perpendicular A phase velocity of thesH-polarizedPT mode propa-
to the loading direction. The group velocities along both thedating in an oblique direction of the symmetry planes is dif-
[101] and the[110] directions in the natural state are 9.129 ficult to measure, but its group velocity is easy to obtain by
mm/us. employing a point-source/point-detector technigfieThis
Figures 1b), 1(c), 2(b), and Zc) display detailed views mode provides certain advantages for estimating residual
of the group velocity sections of the transverse mode neattresses acting in an elastic bddy° We take an example of
the symmetry directions. Figuregbl and 2b) indicate that the SH-mode propagating in the 45° direction to the loading
along the[001] direction are four rays with distinct veloci- direction in the(010) and (110) planes. It is easy to obtain
ties: pureL ray shown,PT ray shown in both figures, from Egs.(29) and(61) that thesePT modes propagate in
intermediate-spee®T (1QT)ray shown in Fig. &), and the natural state at the group velocities 5.841 pasnih the
slow QT (SQT) ray shown in Fig. (o). These rays propa- (010 plane and 5.160 mms& in the (110) plane, while at
gate at 8.429 mms, 5.841 mmys, 5.767 mmyks, and 5.646  033= —1 GPa they travel respectively at 5.824 nus/and
mmius, respectively, in the natural state. Their speed$.204 mmkus. The effect of the uniaxial compressive stress
change respectively by—0.59% (already mentionegd 33 0n thePT mode in silicon is greater in thel10) plane
—0.085%, —0.77%, and—0.82% atos3=—1GPa. The thanin the(010 plane.
group-velocity sections of the fas@T (FQT) and PT It may be interesting to see the stress sensitivity of the
modes make a tangential contact with each other if@b&]  magnitude and direction of group velocities at the cuspidal
direction, and their speeds are identical along this directioedges shown in Figs.(), 1(c), 2(b), and Zc). We follow
both in the natural state and aty;=—1 GPa. TheFQT the method adopted in Ref. 5 for calculation of the polar
mode along th¢001] direction becomes a pure mode which coordinates of these points, the magnitude of group velocity
is polarized in the[100] direction, while thePT mode is Vg and the angular directiofi In the natural state the coor-
polarized in the[010] direction as mentioned before. Note dinates of these cuspidal edges near [B81] direction
that thelQT and SQT rays are of the oblique mode, the shown in Figs. (h) and 2b) are calculated to be5.934
wave normals of which lie in nonsymmetry directions on themm/us, 6.723 and(5.873 mm/s, 3.40). They respectively
(110) and (010 planes, respectively. move to(5.953 mm/is, 7.83j and(5.887 mmus, 4.719 at
The IQT ray along the[100] direction in the natural o33=—1 GPa. We notice that changes in the direction of the
state propagates at 5.767 mua/with its oblique wave nor- cuspidal edges are rather substantial, being more than 1°.
mal lying on the{011}-type planes. However, this ray no The cuspidal edges near t&00] and [110] directions
longer travels along thELOQ] direction under the influence shown in Figs. {c) and Zc) vary respectively fron{5.934
of stressoy3, since the presence of the stress causes the mmius, 83.28) and (5.846 mmis, 89.16) to (5.983 mm/
{011}-type planes to be no longer symmetry planes. Referus, 82.57§ and (5.886 mmfis, 88.25%, resulting in the di-
ring to Fig. 1c), the group velocity of theSQT ray with  rectional change of 0.71° and 0.91° and in the appreciable
5.646 mm/is in the natural state varies very slowly with variation of the magnitude of their group velocities by 0.8%
stresq—0.030% ato33= —1 GPa along theg[100] direction.  and 0.7%, respectively. However, because of the effect of
The group velocities of thEQT and PT modes, which are eidolon associated with the diffraction of sound waves of
degenerate with the speed 5.841 mmaAlong thg100] di-  finite wave lengtH/ it is not easy to measure the directional
rection in natural state, split into opposite directions undeichange.
the stressoz; and the difference between them, 0.0602 Overall, it is worth mentioning that the effect of stress
mm/us atozz=—1 GPa, is about 1.03% of their speed in the on the group velocity of th® T andFQT modes is larger for
natural state. The former mode is polarized in f@81] di-  waves propagating in the direction normal to loading and
rection, and the latter in thE010] as aforementioned. The minimal along the loading direction, while for the oblique
group velocities of these pure modes along [th@0] direc- modes, such aQ T andSQT modes, the effect is the oppo-
tion are equal to their phase velocities and they are respesite; that is, much greater along the loading direction and
tively called the SV (shear vertical and SH (shear- minimal along the direction normal to loading. For the lon-
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gitudinal mode_ propagating_in tf(@l(_)) plz_ine, the effect _is _ Kz_(vaé)2+ 2(K<+1)C§3+—K,Kpr,)pr§
roughly equal in magnitude in both directions but opposite in . ) )
sign. In the(110) plane the stress effect on the longitudinal +(Cqar = 2K+ Ciz T K 2)=0 (73

mode is greater along the loading direction and minimal infor the ray whose oblique wave normal lies on thd_O)
the direction normal to the loading. plane of the tetratropic material. In Eq32) and(73) Cp,

andK, . are defined by
V. GROUP VELOCITY OF THE OBLIQUE MODE

—cWE® 1+ cDEG)
ALONG THE SYMMETRY DIRECTION Cpr==Ci7C = CL/Cey, (743
One distinct feature found in some anisotropic materials K- =K®C{ =C{;/Cy . (74b)

is the presence of an obligue-mode group velocities along th
symmetry directions, such as t&QTandIQT rays shown

in Figs. 1b), 1(c), 2(b), and Zc). These oblique-mode rays can be found by interchanging the indices 1 and 3 in(Z8).

do not exist in an isotropic material. It may be worthwhile to for the former direction and by interchangiig and Cas

derive the expressions governing the group velocity of theand also interchanging&® and c&). in Eq. (73 for thIa
oblique modes along the symmetry directions. The Ob"queiatter direction. Using E+qs(72) aﬁé (73) aﬁd equivalent
mode rays are always associated with @€ slowness sur- equations, the 'group velocities of th®T and SQT modes
face_ and the_ existence of these rays along the symmetry 5I0ng the,symmetry directions of silicon at,= —1 GPa
rection requires theQT_ slowness surface to be CONCAVE an be conveniently obtained and are identical with those in
around that symmetry direction. The concavity condition in aFigs 1 and 2

stress-free natural state was discussed by Musyramd ' ’

Wang? and we discuss the concavity condition of @&

slowness surface in a stressed medium for the case that onjl. DISCUSSION

the normal stress components (i not summedj=1,2,3) ) . ,

are acting and all shear stress components in the medium are W€ have derived various group-velocity formulas for the

2610, i.€.,01,= 013= 05=0. Following the similar proce- symmetry planes of a stressed elastic medium with orthotro-

dures used in Refs. 1 and 10, it is easy to show the concavi§iC O higher symmetry and shown the effect of uniaxial
conditions both of the010 slowness section of th@T  compressive stress on t810 and (110) group-velocity
mode in an orthotropic material and of tl(ﬂ?f)) slowness Sections and the cuspidal features of a tetratropic silicon

section of theQ T mode in a tetratropic material. For normal SPECIMeN as an example. _
solids in which the conditions o€, Css, Cas>Css, and The derived formulas can also be used to determine the

K> C,, hold, the concavity conditions around tF@01] di- effec_tive elastic co_efficients a}nd in principle _the _third-order

rection are elastic constants via E¢68). Since the determination of the
third-order elastic constants are quite a complicated topic,

C%3.>Cli/Cqs (708 interested readers are referred to Refs. 22 and 24 for detail. It
was already mentioned that the pure-index effective elastic
coefficientsC()), (u not summedu=1,2,...,6;i=1,2,3 can

Cis >KWCy, (70D be determined via Eq23) from measurements of the group

for the (010) and (110) QT slowness sections, respectively. O Phase velocities of the pure-mode propagating in the sym-
Likewise, the concavity conditions around tf&00] direc- metry direction. Determination of a mixed-index elastic co-
tion of the (010 QT slowness section and around fe0]  €fficient, sayCys, , can be calculated from th@L or QT

direction of the(110) QT slowness section are respectively 9r0UP-velocity data measured along an oblique direction in
given by the symmetry plane and using the results developed in Sec.

lll. For detailed procedures on determination of the mixed-
Cf3.>CRCyy (718 index elastic constants, readers are referred to Sec. Il B of

Ref. 5. If the QT slowness surface is concave around the

symmetry direction, say thg001] axis, C;3, can be also
Cl3 >CPK_. (71b  determined via Eqg72) and(73) from measurements of the

When conditiong70a), (70b), (718, and (710 are sat- group velocities of the oblique mode along {f@®1] direc-

isfied, there exist the rays of the oblique mode propagatin%ion' Kim et al > determinedCy3 of zinc andC,, of silicon

along the symmetry directions, and they are all satisfied i n their stress-free, natural state from the measurements of
silicon. The expressions for the group velock of the the group velocities of the Otzlli)que r(r13())de propagating in the
oblique mode along thg001] direction can be derived by 001 direction. SinceCys, =Ci3, =Ci3, , one can also de-

- . . i (H— — (3= _ i
similar procedures found in Refs. 6 and 9 and written as  (€Miné bothCi3'=Cyg—0q; and Ciz'=Cy3— 033, which.
appear in the expressions of the effective elastic coefficients

C31_(pxVE)2+2(Cii) Clar —CuaCpr_)pxVi K =(daij/d€y)s, the effective Young's modulus and
4 2 2 Poisson’s ratios®
T(Ca0 = 2Cprs Cia +Cp ) =0 (72) When isotropic materials, such as steel and aluminum
for the ray whose obligue wave normal lies on @40 alloy commonly used in engineering structures, are subjected
plane of the orthotropic material, and to uniaxial tension or compression, they behave as trans-

8imilar expressions for the group velocity of the oblique
mode propagating either in th&00] or in the[110] direction

and

and
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