JOURNAL OF MATERIALS SCIENCE35 (2000)3197— 3205

Nonlinear elastic equation of state of solids
subjected to uniaxial homogeneous loading
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Applying the finite deformation theory to a solid, which possesses either cubic or isotropic
symmetry at stress-free natural state and is subsequently loaded homogeneously in
uniaxial direction, one obtains a stress (or strain) dependence of the Young’s modulus,
Poisson’s ratio, and a volume (or density) change, together with a nonlinear elastic relation
between stress and strain. These are all expressed in terms of the second and third order
elastic constants of the solid material. These expressions are illustrated with examples of
cubic silicon crystal, isotropic carbon steel, Pyrex glass, and polystyrene at the relaxed
state. © 2000 Kluwer Academic Publishers

1. Introduction namics of crystals in reference to the stress-free state is
Murnaghan [1, 2] developed the finite deformation the-given in detail in the book of Wallace [13]. Recently, the
ory using the second and third order elastic constantfirst author [14] has generalized the thermodynamics of
of isotropic and crystalline materials. One of his fun- elastic solids in reference to a state of arbitrary finite
damental contributions is a derivation of a relation be-deformation and derived the expressions for the effec-
tween the (Cauchy) stress and the thermodynamic (setive Young’s modulus and Poisson'’s ratio of a material
ond Piola-Kirchhoff) stress. In the finite deformation at a stressed state under isothermal and adiabatic condi-
theory the strength or the elastic constant of a matetions in terms of the second order thermodynamic elas-
rial at a stressed state varies with stress (strain) actintic stiffness coefficients and three principals stresses
on the material, which was theoretically well accountedacting on the material.
for, based on an interatomic or intermolecular force [3]. To the authors’ knowledge, a nonlinear analytic rela-
Birch [4, 5] extended Murnaghan’s work to a cubic ma-tion between the Cauchy stress referred to the state of
terial and derived the well-known Birch’s equation of finite deformation and the strain referred to the natural
state in geology, which relates a change in density (ostate is not fully established in the case of uniaxial ho-
volume) to a (hydrostatic) pressure acting on the mamogeneous loading, notwithstanding the innumerable
terials, using the parameters described in terms of thevorks done on the finite deformation of materials and
second and third order elastic constants. The work omlbeit a ubiquitous use of the tension test as a tool for
the equation of state or the pressure-volume relationmaterial testing and characterization. This, so called
ship abounds in literature [6]. Murnaghan [2] derivedthe elastic equation of state that describes a behavior
a nonlinear relation between the engineering stress ref material in a uniaxial tension or compression test,
ferred to the unit area at the stress-free natural state arigl analogous to the equation of state in high-pressure
the engineering strain referred to the stress-free stagghysics, which relates hydrostatic pressure or spherical
for an initially isotropic material subjected to uniaxial Cauchy stressto volume change from the stress-free ini-
homogeneous loading. Seeger and Buck [7] extendetial state. In this paper the authors derive not only the
Murnaghan’s treatment to a cubic material. The non-onlinear relation between the Cauchy stress and strain
linear field theories of mechanics including the finite but also the variation of the effective Young’s modulus
deformation theory is well described in the article by and Poisson’s ratio defined at the state of finite deforma-
Truesdell and Noll [8]. tion with stress or strain. These can be anticipated from
Brugger [9] gave an elegant definition of higher or- the finite deformation theory but their analytical formu-
der elastic constants, and using his definition, Thurstotas have not yet been expressed to date. In addition, a
and Brugger [10] derived expressions for the ultrasonichange in density/volume, which includes a contribu-
wavespeeds in stressed solid media in terms of the setion from higher-order strain/stress terms, is given in
ond and third order elastic constants. Extensive data ¢his work. They are all expressed in terms of the sec-
the second and third order elastic constants of numelend and third order elastic constants of a material. We
ous solids of various symmetry groups were compiledprovide a comprehensive treatment of finite deforma-
by Hearmon [11]. Some useful relations at finite defor-tion theory for the case of uniaxial loading especially
mation are described by Thurston [12] and thermody{rom the thermodynamic point of view and illustrate the
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nonlinear elastic behavior with four typical materials: symmetry, which coincide with principal stress direc-

cubic silicon, polycrystalline carbon steel, amorphoustions. Finally, small disturbances caused either by an

Pyrex glass, and polymeric polystyrene at the stresssothermal small uniaxial loading or by an isentropi-

free natural state. cally propagating waves are superposed on the initial
The amount of nonlinearity as compared with thatstate. We denote a new corresponding coordinate of the

of linearity for ordinary materials is quite small be- particle byx.

low the elastic limit of a material for strain less than Displacements between the various states are ex-

1%, but it is appreciable and can be detected fronpressed by

precision ultrasonic wavespeed measurements [15, 16].

Most of the third-order elastic (TOE) constants of u=x-X, U=X-a 1)

materials reported in literature have been ultrasoni- ) ) ) ) )

cally measured. Understanding anharmonic propertiedn engineering strais;; and a Lagrangian strai; ,

of materials, such as the lattice vibration and the therPOth referred to the natural state, are respectively given

mal expansion coefficient of solids, can be facilitated®y

by the study of nonlinear elastic behavior and the TOE 1/0U;  0U;
constants. For strain larger than 1% the nonlinearity &ij = E(ﬁ E) (2)
term is significant and should be accounted for in the J
meaningful solution of elasticity problems. 1/0Xm 0Xm 19U 90U,
For example, when fine whiskers are deformed, very Mij = 5\ o=z —8ii | =é&ij + 55—
) ) . 2\ 0g 04 2 0a 04
large strains are present. Ruoff and his associates [17— 3)

20] have analyzed this problem using finite elasticity _ _ o
and found the conditions for macroscopic elastic insta¥Ve also define a strain referred to the initial state
bilities in tension and compression of perfect crystals

of diamond, silicon and germanium. The present paper Ei = }(%% _ i.)

extends this work. The immediate neighborhood of the P2\ aX 09X, :

interface layer of thin films that are epitaxially grown on 1/ u; du; U IUm

the substrate, especially that of heteroepitaxially grown =_ <_ +—+ __) 4
2\0X; aXi 90X 90X @

ones, may be subjected to strains as large as 10%, since
the interface atoms of the thin films conform to the sur- i
face morphology of the substrate and are thus prohibite@ Principal stretctk; (i = 1, 2, 3) from the natural state.
from being plastically deformed. A recent study of Leefo_r the initial state of homogeneous deformation is
et al [21] on a polymethyl methacrylate (PMMA) film 9iven by

deposited on a aluminum substrate by using picosecond 3Xi _

ultrasonics indicates that the longitudinal wavespeed in Frwle ijAi (i not summed) %)

the PMMA interface layer substantially increases from !

that of a bulk specimen, suggesting that the PMMA in-Note that for the uniaxial homogeneous loading in the
terface layer may be subjected to a large strain. Straing, direction, 11 = A» and n1 = 111 = 122 = 12, Where

Substantia”y |al’gel’ than 10% can be found in the dee[:,)“ are the principa| Lagrangian strains defined by
interior of planets including the earth and inside a dia-;, — mij 8 (i fixed;i = 1,2, 3). The principal stretches
mond anvil used in a laboratory, where a specimen may(; are related to the principal Lagrangian strain®y

be under pressures well exceeding its Young’s modu-

lus at the stress-free natural state [22]. Under these ex- 1 221 6
tremely high deformations, understanding the physical = E( 1) 6)
behaviors of solids will not be possible without consid-

eration of the nonlinear behavior of materials. LetU andF denote the internal and free energies per

unit mass, respectively. L& andT stand for the en-
tropy and absolute temperature, respectively. We use
2. Description of deformation states the superscripts/subscripBandT to represent adia-
and symbols batic and isothermal processes, respectively. The ther-
Consider a solid specimen of cubic or isotropic sym-modynamic stresses? and ¢}, referred respectively
metry, which is in the stress-free natural state. ThdO the natural and initial states, are defined as [8, 23]
Cartesian coordinates of a particle in the natural state
specimen is denoted by vectar The specimen un- a_, (ﬂ) — ) (ﬁ) )
dergoes an arbitrary finite homogeneous deformation a mij /s a amij )+
under uniaxial loading in the direction 3, which coin-
cides in the case of the cubic specimen with one of i g px(£> — px(i) ) 8)
the cubic axes, say, the [001] direction. We denote the 9&ij /s & /1
coordinates of the corresponding particle at finite de-
formation byX, which is said to be in an initial state. The thermodynamic stresg above is also called the
The initial state is under arbitrary static stress and in-second Piola-Kirchhoff stress. A (Cauchy) strg$éX)
cludes the natural state when the stress is zero. We talend az*(X), both evaluated at the initial sta¥g are
the coordinate axes of both the natural sesnd the equal to each other. It was shown by Murnaghan [1]
initial stateX to be parallel to the directions of material that they are related to the thermodynamic sttﬁ@()
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evaluated at the initial stabé by precision ultrasonic measurements in the range below
X: 3%, the elastic limit of a material indicates that they vary lin-
aij (X) = Ti?((x) _ Px X 0X; 2(X), (9) earlywiththeLagrangianstrain, which canbe predicted
Pa 0 08 by truncating after the third order term. The fourth and
which reduces in the case of the uniaxial homogenougIgher ordgr terms pontrlbgte toa nonl_lnear t_)ehaylor
: of the elastic coefficients with strain. This nonlinearity
loading to ) -
is extremely small, very difficult to detect, and usually
1 a - buried in experimental errors.
aij (X) = Az)\s)‘i)‘ifij (X) (i, j not summed) (10) The thermodynamic elastic stiffness coefficients ap-
! pearing in Equation 11, which are referred to and eval-
We also define the thermodynamic adiabatic and isouated at the initial state, is related to the corresponding
thermal elastic stiffness coefficients referred to the ini-those,cga),rss(X), referred to the natural state and eval-

tial state as uated at the initial state by [12, 13]
X 2
! 08kl S 0&jj A&k 1kl pa 08p dagq 03 das PI'°
(11) 1 Tors
L N A I Y o
T " @i, j, k, | not summed)

The internal energy under adiabatic condition and theyhere the.’s with subscripts are the principal stretches
free energy under isothermal condition can be expandegefined in Equation 5 and
in terms of the Taylor series about the natural state and

they are expressed as 2 2
’ " Cgt;)rrss(x) = (Pai) or (,Oa&>
aﬂpqanm X 3ﬂpq3nm X

1
paU (1, S) = paU(0, ) + (_)Ci?kl i ki

? = Cas@ + Cpg @+ (17)
1 S
* (6>Cijklmn’7ij Matimn+ . (12)  The SOE and TOE constants onthe second line of Equa-

tion 17 are defined in Equations 14 and 15 respectively.

1\ ¢ Itis henceforth understood that when the superscripts

paF(n. T) = paF(0.T) + (E)Ciik' "Tij Tk T andSdo not appear in the elastic coefficients, such as
1 Cijkl » Gijkimn, Ciji, the Young’s modulus and Poisson’s

+ (-)CiT-k|mn77ij77kmmn+ ..., (13) ratio, these elastic coefficients are referred to either

6) " isothermal or adiabatic conditions. In most cases in this

. _ _ work the strains are defined with reference to stress-free
where the adiabatic and isothermal second order EIaStH‘a_tural state. So, when there appears no Superscript as
(SOE) constants at the natural state are respectively the thermodynamic stress, it is also understood

defined as that 7;j; = 7. It follows from Equations 7, 10, 12 and
92U (1, 9) T2 13 that for the homogeneous uniaxial loading in ¥e
G = [Pai’] = (—J> direction
Onijona Ja  \97k/ sa
14 oy L 1
- [p 9*F(n, T)} <8Tﬁ‘> (1) aij (X) = @MM (Cljkl M+ 5 Gijkimn?ki mn + - )
ijk = |Pam—— | =\7—) >
) mjdma da \9ma/7:a (i, j not summed) (18)

and similarly, the adiabatic and isothermal third ordergjnce the strains. the thermodynamic and Cauchy st-
elastic (TOE) constants at the natural state are definegsses are symmetric with respect to the subscript in-

by dices, it is convenient to introduce the Voigt notation:
33U (1. 9) 5242 11~1, 22~2, 33~3, 23~4, 13~ 5, 12~6. Using
quklmn — |:,0a n } _ ( g ) the Voigt notation, a material of cubic symmetry has
MijOnkdnmnla  \9M0Nmn/ g4 three SOE constants:

(15) c11=Cpp=0Cz3, Ci2=C13=C3, Caa = Cs5= Cgs,

g [p 3F(n, T) } _( 32rﬁ‘ ) (19)
T = | pa = . _
e OnijOnkidnmnla  \0Mi0Nmn/ 1;a and six TOE constants (4323 m, m3m groups):

It suffices to say that the internal and free energies irf111 = C222 = C333, C144 = C255 = C366, C123, Cs56,
Equations 12 and 13 are truncated after the third or-
der term in Lagrangian strain. The effective thermo-
dynamic elastic stiffness coefficients determined from C155 = C244 = C344 = C166 = C266 = C355.

C112 = Cpp3 = C133 = C113 = C122 = Cp33,  (20)
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For an isotropic material there are two SOE constants3. Poisson’s ratio and volume change
In the aforementioned homogenous loading in ¥e
Ci2=»h, Caa=p, Cu=xr+2u, (21)  direction coinciding with the [001] cubic axis, the only
nonzero stress componensig = o3 # 0. The nonzero
Lagrangian strains are three principal strains, which are
nij =nidij with ny=mn,. Using Equation 18 with the
identity relations given in Equations 19 and 20, one

and three TOE constants:

Ci123=1"V1, Ciaa=1v2, Cy56= V3,

Ciz=v1+2v2, Ciss=v2+2v3,  (22) gptains for the stress; = o17 =0
C111 = v1 + 6v2 + 8vs, 1 1
o1= - <C11kmk5k| + EcljklmnnkfsklnmSmn + - )
wherel andu are called the second order Larndn- 3
stants, ana;, v, andvs are called the third order Lagn” 1 1 2
constants. = )L—3 (€11 + C12)m1 + C12m3 + > {(C111 + 3c112)n7
For notational simplicity and convenience for the
equations we deal with in the following sections, let +2(C112 + C129)m103 + Crion3) + - ] =0.
us first define dimensionless parametess, hy, ho,
hs, g1, g2, by, andby, as (30)
Let
C12
Vg = ————, (23) mo
C11+ C12 =——, e, n=—kns (31)
13
S Lt +Ci23 _ vo(Cuaz+ 0123)’ Substitutingy; by —kn3 into Equation 30 and solving
2c12 C11+ C12 C12 the resulting quadratic equationktin terms ofyz yield
C111+ 3C112
h3= ———, 24 1/2
°7 2(0u + o) 9 k= 1+ hag 1- {1 _ Svohans(L + hus) } ,
2h3n3 (1 + hana)?

01 = hy — ha 4 wghg,

(32)
o = h% — hihy + l)oh3(2h1 — 3h2) + 2\)gh§, (25)

wherevg, the Poisson’s ratio at the stress-free state, and
h1, h,, andhz are given by Equations 23 and 24, respec-
tively. We have chosek > 0 for a normal solid. The
solution with a positive square root fercorresponds

to a negativek and is discarded in Equation 32.

) Using the binomial theorem, Equation 32 is expanded
and next define strength parametétts, e, andez , 85 iy powers ofy to yield after an involved algebra

Eo = €11 — 2v0C12, (27)

by = 2(1+ vo + qu),
(26)
by = 4vg + 4v2 + 6vo01 + 401 + 302,

k=vo(1+gns+gn3 +gans+---),  (33)
e1 = Eo(1+ 2v) + Clz(l)alhg — 3h; — 6yghy

+ 3Uoh2 — Zl)ghg),
& = Eo(2v0 + 40§ + 2vog; — 0.5) (28)

+ c12[ (vg* + 2) (h3 — 3vohy — Bv3hy

+3v2hy — 2v3hs) — 2v0(2h1gr — hogs + @2)]- The effective Poisson’s ratio at the initial stafeis
independent of direction in th¥; X, plane normal to
the loading direction and we denote it by, which is

whereg; andg; are given in Equation 25 and

Oz = h%(hl —hy) + vohg(hi — 6h1hy + 6h§)
+ 2v3h3(3h; — 5hy). (34)

Note thatEg in Equation 27 andy in Equation 23 )

are the Young's modulus and Poisson’s ratio of a cubi@€fined by

material at the stress-free natural state. _ da/h 14 2p3dy
A cubic crystal loaded in the [001] direction tends to- V3=~ dis/hs 1+ 2pidns’

wards that of tetratgonal symmetry and may be termed

as having a tetratropic symmetry, which has six ther- dn;  d[k(n3)ns] 2

modynamic elastic stiffness coefficients of the second g~ =~ g, vo(1+ 29113+ 3g2m5+ - -+ ).

order defined in Equation 11. They are written as (36)

which is substituted into Equation 35 to yield

(35)

Ci1=0Cs, Cz3 Cip Ci3=0Cp3,
C44=Css  Cee. (29) v3(X) = vo(1 + bz +bn5+---),  (37)

Formulas for phase and group velocities in terms ofwhereb; and b, are expressed in Equation 26. The
C,.» and stresses acting on the medium are described iffective Poisson’s ratio is a ratio of an infinitesimal
detail for the symmetry planes of stressed anisotropitransverse strain to an infinitesimal longitudinal strain
solids including a tetratropic medium by Kietal. [24]  of a material referred to the very strained state. Hence,
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when we say simply the Poisson’s ratio, it actuallywhich yields the following differential equation involv-
means the effective Poisson’s ratio. An engineeringng n1 andns:
straines is related to a Lagrangian strajg via Equa-

tion 3 by _% _ Vo + hong + 2hvons (44)
1 dn3 1+ 2h3’71 =+ h2h3 ’
n3 = 83(1 + 583) (38)
The solution of the above differential equation leads to

= —n;/n3 being identical to Equation 32.
Achangein cross-sectional ardgg/ A, is specified
by A2, which can be expressed as

The Poisson’s ratio can be now expressed in terms df
engineering strain as

1
V3 = vo[1+b183+ (§b1+b2>8§+"':|- (39) 22 = Ax/Aa=1+2n1=1-2kns

=1—2vona(1+ Oz +Gn3+---). (45
The engineering Poisson’s rati§ is defined as ° 3( s T Gells ) (43)

A change in volumé&/ or the density from the natural

€1
vy = T (40)  state to the initial state is given by
In terms of the engineering strain and engineering’2 _ Vx =2k3 =1+ (1— 2vo)n3
Poisson’s ratiok in Equation 31 is expressed as px  Va
[— 2 DY
_m _81(1 +61/2) V:E(l — 1):553/2) (0.5 4 2vg + 2vp01)n3 +
B N3 - e3(1+ e3/2) - 1+ &3/2) ’ =1+ (1-2vp)e3 —vo(3+ 2g1)8§ +---. (46)
(41)

which in combination with Equations 33 and 38 yields
aquadratic equation irf . Solving forvf in terms ofes

and opting fon§ > 0 foranormalsolid, one expresses a It f
strain dependence of the engineering Poisson’s ratio 3%

4. Nonlinear elastic equation of state

and Young’s modulus

ollows from Equations 18, 19 and 20 that the only
nzero stress componentis expressed as

1
vE = vo| 14 Z(1+ vo + 201)e3 )3
2 03 = 15733
1

1
+§(vo—|-v§+2vogl—|—2gl+292)g§+...]' ”

1
—<033ij77i3ij + 5 Caaijia i 0ij Mdki + )

(42) 3
Note that in a usual tension or compression testing (1 + 253)"/? - c (c Coor?
of materials, what are conventionally measured are an ~ 1 4 2y, 12711+ C1an3 + 1 (Cri2 + Cr23)
engineering strain and an applied force, and the engi- 1
neering Poisson’s ratio, which is treated as a constant. 4 2¢,1.n,p5 + —Cmng} 4. } (47)
Equations 39 and 42 indicate, however, that both the 2

(effective) Poisson’s ratio and engineering Poisson’s

ratio are a function of strain. These strain dependencieSubstitutingn: by —kns, wherek is given by Equa-

are amply demonstrated by precision ultrasonic meation 32, and expanding the resulting equation in power

surements of elastic moduli [15, 16]. What has beerseries ofy3, one obtains after some lengthy algebra

so far unknown are the explicit analytical expressions,

such as Equations 37, 39 and 42. o3 = n3(Eo+ €z + emi +---), (48)
Itmay be interesting to see if the Poisson’s rati(X)

given in Equations 87 and 88 of Ref. [14], where it is yynere Ey, the Young's modulus at the relaxed state

expressed in terms of the second order thermodynamig given in Equation 27, aney ande;, are defined by

elastic stiffness coefficients given by Equation 11 anquuation 28. The (Cauchy) stress at the initial siage,

three principal stresses, will lead to the identical resultsg related to an engineering strain via Equation 38 by
for strain dependence. Applying Equation 87 of Ref.

[14] to the case of uniaxial homogenous loading of
o1=o072=0, one obtains, with the aid of Equations 16, o3 = 83|:E0 + (
17, and 29, an expression

di/ar Cas 23 (49)

dig/hs  Cu+Cr A2 The first Piola-Kirchhoff stress referred to the original
Ci2 + (Cr12+ C129)71 + Cr1o3 area atEt_he natural state is kr_lown as an engineering
X 3 ; stressrg- in a conventional tension testing of materials.
C11 + C12 + (C111 + 3C112)n1 + (C112 + C123)13 Using Equations 45 and 38, the engineering stress can
(43)  Dbe expressed in terms of engineering strain as

1 2
SEotejest (@ +e)ez+ .

v3(X) = —
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E 2 1 5. Stress dependence of strain, Young’s
03 = A103 = 83[EO + (5 Eo — 2voEo + el)g?’ modulus, Poisson’s ratio and volume
change
So far, we have expressed various elastic moduliand the
Poisson’s ratios as a function of strain. In this section
(50) We will express them as an explicit function of stress. To
obtain the stress dependence of the Young's modulus
Note that in the conventional tension (or compressionand Poisson’s ratio, Equations 48-50 are inverted to
testing of materials%E versusez are usually plotted express a strain as a function of stress. Expressing the
with a linear dependence between them. However, theesults in powers ofs/ Eg or o / Eo, one obtains

— (2voEo + 2v901Ep — €1 + 2vpe; — e2)€§ + .. ]

above equationimplies thatthe relation is basically non- )
linear. _ 08 1_EE+(2_Q%_3)<E)
With the knowledge of Equation 48, the (effective) 3 Eo Eo Eo E2 Eo/\Eo ’
Young’'s moduluges at the initial statéX can be written (55)
as
Eo(X) = 972 _ ;,dos s 83:2[1_<}+E>2+<}+3+2ﬁz
3 - d)‘-S/)"S 3dn3 d)‘3 EQ 2 EO Eo 2 EO EO
= 33(Eo+ 2e1ns + 3ezn + ) _3>(2)2..} (56)
= Eo+ 2(Eo+ e1)n3 + (4e1 + 3e)ni + - -, S0/ \Eo
1) o 1+ (2 &\ o5
which is expressed in terms of engineering strainas 3 = °" 27 B/ E
Es = Eo+ 2(Eo + €1)e3 + (Eo + 561 + 3e2)e5 + - - - 1 o, 62
(52) + (E — 2v0 + 2v001 + 9vg
Equation 50 readily yields an expression for the engi- 262 oE\2
neering Young's modulugf defined agrs /¢3! L8 6,)03 + 22 3) <_3) o
Eo Eo EZ Eo/\Eo
E_ 03 1 (57)
Ey == =Eo+ | sEo—2voEo+ €1 )e3
€3 2 Substituting Equations 56 and 57 into Equations 39,
— (2v0Eo + 2v0g1Eo — €1 + 2voer — ez)£§ 4 42, 46,' 52, and 53, the variations of the Po_lsson S ratio,
(53) Young’s modulus, and a volume change with stress can

be obtained. We express the effective Poisson’s ratio
The engineering Young’s modulus can be construed agnd effective Young’s modulus as a function of Cauchy
a kind of average of the Young’ moduli between thestress, the engineering Poisson’s ratio and engineering
natural and initial states. Although its physical mean-Young's modulus in terms of engineering stress, and
ing is not so clear-cut, it is the most easily and conve-@ volume change using both Cauchy and engineering
niently determined modulus in a conventional testing ofstresses. They are written as
materials. The linear infinitesimal elastic theory treats o bie ) [ o 2
it as a constant, while the finite deformation theory v; = g |:1+ b1—3 + (bz - 1—) (—3> + - }
predicts a strain dependence of the Young’s modulus. Eo Eo Eo

Equations 48-53 are all considered as nonlinear elastic (58)
equations of state of solids, which describe a nonlin- E. — En 4+ 2(E a3

ear elastic relation between the stress and the strain of =3 = Fo+2(Fo+e1) Eo
materials.

Referrin_g to Equation 89 of Ref. [14]_, one Wri'ges + <2e1 _ zﬁ + 3ez> (@)2 4., (59)
the (effective) Young’s modulus in the uniaxial loading Eo Eo
along theX3 direction as Vv
X _fa a2
Es(X) =Cas+ 03— 2v3(C1z—o03), (54) Va  px Eo
whereCj3 andCj 3 are the thermodynamic elastic stiff- - (% + 2vo + 2v001 + % — 21:5081)
ness coefficients of the second order defined in Equa- 0 0
tion 11 and the (effective) Poisson’s ratig is given 03 \?
by Equation 39. Expressing ti@3; andCy3 in terms X <Eo) +-- (60)

of the second and third order elastic constants via .
Equations 16 and 17 and substituting the result, Equa-  _ _ oz (1 2 e
tions 37 and 48 into Equation 54, one can prove aftera LT (1 =2vo) E \z7 Avo + 2001 + Eo
lengthy involved algebra that Equation 54 is identical E\ 2

to Equation 51, providing consistency to the results we _ 2”061) <U3 ) 4.

obtained. Eo /\ Eo
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oF The SOE and TOE constants of cubic silicon are
E. taken from the measurement by Hall [26], who re-
0 ported in units of GPac;;=16564, ci,=63.94,
Cas=79.51, C111=—795, C110=—445, Cc1o3=-75,
C144= 15, ¢155 = —310, c456= —86. Using these con-
Ex 2 stants, we calculate the relevant parameters in Equa-
& V& 2916‘1) (03 ) ] (61) tions 23-28 to express the nonlinear elastic equation
’ of state and write the (effective) Young’s modulus,
Poisson’s ratio, and a volume change as a function of

1
D:E = Uo|:1—|- E(l—l— Vo + 2g1)

1/5 1
+§<§vo+3v5— E + 01 + 6voQ1 + 202

E 1 of Cauchy stress and engineering strain.
Es = Eo+ (—Eo — 2V0E0+€1)—
2 Eo o3 = £3(13002+ 166783 +---),  (63)
1
— (ZEO + 4v3Eg + 21091 Eo — 2v0€1 E; = 13002+ 3.56%73 + - - - = 13002
EN 2 + 463593+ - - -, (64)
n e &) () .. (62)
Eo Eo ' vz = 0.2785(1— 0.0188%3 + - - -)
Equations 57 and 62, in which a stres§ is defined = 0.2785(1— 24573 + - - ), (65)
with respect to unit area at the stress-free state, arg, 0a .
derived in Refs. 2 and 7 without the last term in bothV— = — =1+0.0034063+4.382x 10 ‘o5 + - --
equations. a  PX
= 1+ 0.443Q:3 + 0.56083 + - - - . (66)
6. lllustrations of nonlinear elastic behavior Next, we turn to a typical structural isotropic ma-

It is well known in ultrasonics that sound speeds varyterial, high-strength carbon steel Hecla 37 (0.4% C.
with applied stresses. From measurements of the varp.39% Si, 0.8% Mn), the SOE and TOE Laroonstants

ation of the sound speeds with uniaxial stress and hyof which were reported in units of GPa by Sméhal.
drostatic pressures, one can determine the SOE and7]asy =111, =821, v; = —358,v, = —282, and

TOE constants. Amethod of determining the (effective)y, = —177. We choose to express a nonlinear elastic
Young's modulus and Poisson’s ratio at an arbitrarilyequation of state that relates an engineering stress to an
stressed initial state from the ultrasonic acoustoelastiengineering strain and to list other quantities as a func-
measurements has been described by the authors [2%bn of engineering strain, as they are typically mea-
Variations of the Young's modulus and Poisson’s ratiosured in a conventional tension/compression testing.
with stress or strain have been observed to be linear iThey are written as

most materials in the stress range below the elastic limit.

The square terms in stress and strain, which are shown o5 = &3(21139— 7902e5+ - - ), (67)

in Equations 39, 52, 58 and 59, are so small that they are o o

difficult to detect experimentally. These equations arevhere the term inside the paEentheS|s is equal to the
derived on the assumption that the internal and free erNgineering Young's modulugs , and

ergies truncated after the third order term in Lagrangian
st?ain (see Equations 12 and 13) correctly degcribg the vy = 0.2874(1- 25143 + ), (68)
material behavior. Even though the assumption fits theVx  pa 2

material behavior very well, it is not strictly true, and v, — 55 ~ 1+0.4251%3 +0.95283 +---. (69)

the internal and free energies should in principle in- )
clude the fourth and higher order terms in Lagrangian Now, we choo_se Pyrex 9'355, an_amorphous material
strain. In such a case the cubic terms in strain (or stres$9 See its nonlinear elastic behavior, whose SOE and
in the expressions of the constitutive elastic equationd OE Lame constants were reported [16] in units of
of state, such as Equations 49, 50, 56, and 57, and tHaéPa as. =1353, 4 =275, v; =264v,=—118, and
square terms in strain (or stress) in the expressions o = 105. Pyrex glass has an anomalous behavior in the
the Young's modulus and Poisson’s ratio, such as Equal OF constants in the sense thatandvs are positive,
tions 39, 42, 52, 53, 58, 59, 61, and 62, will be affectedn lieu of of being negative just as those of other typical
by the inclusion of the fourth order elastic (FOE) con- isotropic matertials are. This behavior is phenomeno-
stants. The FOE constants of some materials can Hegically associated with the low thermal expansion co-
theoretically estimated (see Ref. [11]). However, theyefficient of Pyrex glass. A similar behavior is found in
cannot be reliably determined by the present status dt/sed quartz [28], which has a very low thermal expan-
artin experiment. In the following examples taken with Sion coefficient.

cubicsilicon andisotropic carbon steel, Pyrex glass, and
polystyrene, we neglect these cubic and square terms. o3 = £3(64.07 + 3230¢3 - - ), (70)
They are retained in the equations given in Sections
3-5, as they represent a behavior of higher order non-
linearity in case that the FOE constants are nearly zero
and an observed elastic behavior of materials exhibits 3 = 64.07+ 110805 --- = 6407+ 71023 - -,
such a higher order nonlinearity. (72)
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vz = 0.1649(1— 0.027363 - - -) and dimensional changes of a specimen. Better accu-
racy in the (effective) Young’s modulus and often in

= 0.1649(1~ 1.75%3--), (73) " the Poisson’s ratio is usually obtained through accu-

Vi 4 rate measurements of ultrasonic wavespeeds of vari-
v. = 1+ 0.0104653 + 7.798 x 10 "o3 - - - ous modes propagating along various directions in the
a specimen, as described in Ref. [25]. Since the preci-
=1+ 0.670%3 + 0.17859§ e (74)  sion ultrasonic measurements, which determine sound

speeds better than one part irf 18xhibit a nonlinear

Equations 70-73 indicate that Pyrex glass, a brittidoehavior between stress and strain, it should be possible
material of medium strength, has a strong nonlineato see the nonlinear behavior in a carefully controlled
contribution to its elastic equation of state and thistension/compression testing which provides precision
kind of strong dependence of the Young’s modulus andneasurements of an applied load and dimensions of
Poisson’s ratio on stress (or strain) may be typical of & specimen. Indeed, a nonlinear stress-strain relation
behavior of glass that possesses a low thermal expand a strain dependence of the Young’s modulus were
sion coefficient. demonstrated in a tension testing of various whiskers

Finally, we take an example of a typical polymeric [29, 30]. They can be used to determine some of the
material, polystyrene, the SOE and TOE lemmon-  TOE constants of materials.
stants of which were reported by Hughes and Kelly [16] The Young's modulus and Poisson’s ratio obtained
to be in units of GPa =2.889,. = 1.381,1, = —212, from the tension/compression test are isothermal val-
v, =—8.3, andvz = —2.5. An engineering strain, the ues, while those calculated from the ultrasonic mea-
engineering Young's modulus, engineering Poisson’surements via Equations 43 and 54 are adiabatic ones.
ratio, and a volume change, are expressed in termenoting the isothermal and adiabatic values by super-
of engineering stress. The nonlinear elastic equationscriptsT andsS, respectively, they are related by [14]
of state, the Young’s modulus, Poisson’s ratio, and a

change in volume/density are written as ET E3S E3S
3 = oL TES = o S’
afasEFT 1+ afAE
£3 = of (0.2705+ 0.275%F -..),  (75) 1+ 3/0)(37(:3(1 + 1) 3T
where the quantity inside the parenthesis is equal to a ET (79)
reciprocal of the enigneering Young's module§, ES = 3 T
1-agrE;
E —_— —_— E DY
vE = 0.33831— 0.815Q5 - - - ), (76) S oI + g AE] &)
\Y 3T 1 _q9rET "
7: =1+ 0.0875(:F + 019730 E)?.--. (77) 1—aghBs
wherei denotes
Equations 75 and 76 indicate that polystyrene has arela-
tively high nonlinear contribution to the elastic equation = Taz(1+r) (81)

of state. A strong dependence of the Young’s modulus oxCys
and Poisson’s ratio on stress (or strain) is shown by

them. This kind of behavior might have been expectedand the dimensionless paramateis expressed as
for low-strength materials such as polymers. However,

a volume change is quite small even at large strain
. ge s J o= (a >Q3301+ (a >Q3302+(2Q13 Ql)os.
Note that in the above Equations 63—-77 the highest ° ° (82)

order terms of strain and stress, which are absent in th
conventional linear theory, are due to the contribution

of the third order terms in the internal and free energieg,
given in Equations 12 and 13.

fA Equations 79-82¢7 and of are the thermal
xpansion coefficients at constant Cauchy stress and
onstant thermodynamic stress, respectivelyjs the
specific heat at constant Cauchy stress, Qﬂd are

the effective isothermal elastic compliance coeff|C|ents
7. Discussion For detail of these thermodynamic relations, refer to
A conventional tension/compression testing of mateRef. [14]. The termsj A EST oS (w=1,2,3)in Equa-

rials lacks in precision measurements of strain andions 79 and 80 depend on stress. However, they are
usually fails to show a nonlinear behavior betweenmuch smaller than unity and may be replaced by
stress and strain, which is described in Sections 4 and $he constant values evaluated at the stress-free natu-
In an ordinary tension/compression test, the calculatiomal state. For conversion between the thermodynamic
of the Young’s modulus involves the differentiation of elastic stiffness coefficien8! andC? , between the
stress with respect to strain, which again involves thesOE constantsT andcS between the TOE constants
differentiation of displacementwith respectto gauge dI-CMw andcwv (A w, V= 1 2 ...6), refer to Refs. [14]
mension, and therefore, a determination of the Young'sand [9].

modulus accurate enough to exhibit a strain dependence Amorphous and nontextured polycrystalline materi-
requires very precise measurements of the applied forcals possess isotropic symmetry at the stress-free natural
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state and a majority of crystals observed in nature befacilities of the Cornell Center for Materials Research,
long to cubic symmetry at the relaxed state. It is wellwhich is supported by a Grant from the National Sci-
known that an isotropic material at the stress-free natuence Foundation, is acknowledged.

ral state behaves as a transversely isotropic material at

the stressed state under uniaxial loading, say iifie References

direction. Its effective elastic moduli are characterized 1.
by five second-order thermodynamic elastic stiffness2.
coefficientsCll =Cyy,C33, C12, C13=C53,Cs4=Cs5s,
Ces6=(C11 — C12)/2, which are related to the two SOE
and three TOE Lamconstants via Equations 16, 17,21 4
and 22. Similarly as aforementioned, a cubic material 5.
at the stress-free natural state behaves as a tetratropi®
material at the stressed state under uniaxial loading in”
the X3 direction. Its effective elastic moduli are char-
acterized by six second-order thermodynamic elastic
stiffness coefficients given by Equation 29, which are
related to the three SOE and six TOE constants via9.
Equations 16, 17, 19 and 20. Under triaxial stresses.:
an isotropic material at the natural state behaves as a
orthotropic material with nine second-order thermody-
namic elastic stiffness coefficients and so does a cubic
material at the natural state when its cubic axes coincid&?.
with three principal stress directions. A similar proce-13
dure could in principle be extended to obtain nonlinear, ,
elastic relations for an orthotropic material. However, 5
because of the increasing number of elastic constants
involved and the presence of cross-coupling terms beté.
tween principal stresses, one would expect very comi’-
plicated nonlinear relations and it is hard to imagine
that one might gain further meaningful physical insightq
from these relations.

3.

21.

. 22.
8. Conclusion

Nonlinear elastic equations of states of solids governss.
ing the behavior between stress and strain under uni-
axial homogeneous loading have been derived for cu-
bic and isotropic solids. A strain/stress dependencé*
of the Young's modulus and Poisson’s ratio, and
change in volume/density is also expressed. These reg.
lations are described in terms of the SOE and TOE cong7.
stants of solids. The nonlinear behaviors are illustrated
with examples of cubic silicon, high-strength carbon?®
steel, medium-strength Pyrex glass, and Iow-strengtﬁg'
polystyrene.
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