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Abstract

This paper expresses the coefficients of equation of state of solids in terms of the combination of
third-order and fourth-order elastic constants, which approximate the pressure derivative of bulk
modulus well in second-order Murnaghan equation (ME2) and second-order Birch equation
(BE2).
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1. Introduction

Isothermal equations of state of solids, such as first-order and second-order Murnaghan’s equations
and first-order and second-order Birch’s equations are described in detail by Macdonald [1],
Knopoft [2], and Murnaghan [3].

Let V denote the volume of a specimen and P the pressure applied to it, at some constant
temperature T. Then, an isothermal bulk modulus B is defined as Bo = —V(dP/0V) r which at a
given reference pressure Po shall be Bo = — Vo(dP dV)p= Po . The first- and second- pressure
derivative of the bulk modulus evaluated at P = Py shall be denoted by B/ and Bo” , respectively.
Po is assumed to be one bar in this paper.

For convenience, the following notations are introduced.
n=B) (1); 9=BoBd  (2); p=P-Po;z=p/Bo; = VoV, 3)

all of which can be obtained from measurements of pressure and volume, combined with high
precision ultrasonic wave-speeds. This author also introduces three deformation states
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characterized by indices a, X, and I, where index a represents an undeformed stress-free state,
index X characterizes a static finite deformation state from the undeformed stated a, and index I
represents a small deformation state superposed on the finite deformation state X by a travelling
ultrasonic wave. Most commonly used equations of state of solids are: (i) first-order Murnaghan
(ME1); (i1) second order Murnaghan (ME2); (iii) first-order Birch (BE1); (iv) second-order Birch
(BE2). The forms of ME1, ME2, BE1, and BE2 are described in Refs. 4-6, which indicate that all
these equations of state can be specified with the knowledge of n and Y, with measurements of
pressure P and volume ¢ = VoV. BE1 and BE2 are favored by geologists in describing the interior
of the planet earth. Barsh and Chang [7] on the basis of their ultrasonic data of cesium halides
conclude that the three-parameter equation of Birch is superior to Keane’s equation. This paper
will show in the next section, Theoretical Developments, that V/Vo = Vx/Vo can be expressed in
terms of the initial bulk modulus Bo and combination of fourth-order elastic constants. With the
knowledge of the fourth-order elastic constants found in literatures [8], V/Vowill be calculated and
compared with the experimentally obtained 7 =Bo, ¢ = Bo B¢’ , quantities defined by Eq. 1 and
Eq. 2, respectively.

II. Theoretical Developments

Let’s designate three indices ‘a’, ‘X’, and ‘x’ as respectively representing the stress-free state
with density p,, the finitely deformed static initial state with density p, and the final state with
density p, which arises due to propagating small ultrasonic waves. Using vector notation these
three states are described as

a: stress-free state with density p,
X: finitely deformed initial static state with density p
x: final state with density p

The deformation from the initial static state is described by
u=x-X, (D)
which in the case of a uniform finite deformation with no-rotation involved can be written as

o _ o

u;j = ax; = ox, = Wi (no rotation). 2)
Let’s define ;; as
_ axi _ ax] _ axi _ ax]
a” - 6a]- - da; - a]l an - 0X; (3)
Then, the Lagrangian strain 1;; is written as
__ 1 [0xs Oxs 1
Nij = 3 (6_(1i oa; 5ij> =3 (“siasj - 5ij)- “4)



Oxg 0 . .
In the above Eq. 4, a—ZS_ ﬁ = agag; is called the right Cauchy-Green tensor evaluated at stress-
i oaj

free state. Then,

1 1
Nij=3 (g + wy + wye ugy) =wy; + () Uki U;j

1 1
ai; = 8ij +uy; = 8ij +Mij — 2 Nilliej + 5 MMty — = (%)
_ Oa; d(xi—u;p) du; da 3 5
By =5, = Tox, ~0u~ a—%a—,f; = 8ij — wikBrj = iy — Ny + SMikMkj — 5 NiwMathyj + -+ (6)

Let H denote enthalpy and 7;; represent the thermodynamic stress.

0H 1 1
nij = —Po (aTij) = SijraTrr T 5 SijrkimnTraTmn + 2 Sijkimnpg TkiTmnTpg T+ (7
X,S
da; 0a;j
where Tij =) 55w, Lkt =JBucBjiTa- ®)

From Egs. 7 and 8, one obtains
Nij = Sijkt BirBisTrst+ %Sijklmnlz.BkrﬁlsﬁmtﬁnuTrsTtu
+ = Syjctmnpa)* BiBisBme BrauByoBaw Trs TeuTow + -+
which is simplified to
Nij = SijiaTrk + [Sijlehhmn — 28ijknShimn T %Sijklmn] Ty Topn + - )

Evaluation of the above Eq. 9 is quite lengthy and involved. One denotes the square bracket
items as

.. 1
[ijklmn] = Sijlehhmn - ZSijkhShlmn + ESijklmn
Then, Nij = SijiaTia + [GkImn] Ty, Ty + [ijkImnpq] Ty TpnTpg, (10)
where [ijklmnpq] denotes
.. 3 1
[ijkImnpq] :[Sijkl (ESggmnShhpq - 2Sg‘gmh'ghnpq + EShhmnpq) - Sijkg (4Sglmn5hhpq]
_4Sglthhnpq+ Sglmnpq) + SiigthkmnShlpq + 3SijkhShgmnSglpq
_SijleghmnSghpq + ShhpqSijklmn - ShnpqSijklmh - Shlpqsijkhmn

1
+g Sijklmnpq]Tlemnqu +



Under hydrostatic pressures P = — %Tii

1 1 1
P==2 CemmMmm + gckkmmﬁmm(ﬂhh — 2N + 2Nk Mpn — 5 ManTlgg — NgnMgh)

1 1 1 1
3 CikemnpplmmMpp (E + Mgk — Enhh) BET] CriemmpprrNmmMppNer +

For cubic and isotropic solids, (1 + 21,,,m)3 = V/V)? = (1 +20)3 n,pm = m;m (fixed) =
1,2,o0r 3.

2
1 V\3
n=Mmm = E[(V_O)g - 1]
1 1 1
pP= _ECkkmmn + (5 Ckkmm % Ckkmmpp) 772

1 1 1
+ (E Ckkmm s Ckkmmpp + 1s Ckkmmpprr) 773 + - (1 1)

= Ciomm = £3(C11 +2C13) = 2By Cickmm = 9Bo (Bo: Bulk Modulus).

2 212
_3 _ (¥ 3p. L —_(¥\3 2p _1
P_z By [1 (VO) l+ (4 By 24 Ckkmmpp) ll (VO) l + (16 By 48 Chekemmpp
243
1 V\3
+ = Ctemmpprr) [1 _ (V_O)sl - (12)

Note in Eq. 12 that Ckkmmpp = 3(C111+6C112+2C123) = — 27B( B (see Ref. [8-10])
Crimmpprr = 3(C1111 + 8C1112 + 6C1122 + 12C1123) (13)

2
-2, l1 - (Vloﬂ + B, G +2 B{)) l1 - <(V10)§>l + [ By + - Bo By

2
4% (Cini+ 8Cin2 + 6Cnz + 12C123)| ll - ((K)3>l + - (14)

Vo

~1/3
P=Cin+Gn2+Gn3+ Gnt+- =Gnl; 77=1_(1)3 ; Z_Z= B Vio(Vlo)



2

i(K)E = _ 2 (1)2/3 B: Bulk Modulus

dp \V, 3B \V,
5 1 2 2
n_dndv _ 21 (V\Tsdv _ 2 (V)i _ d (Vs
ap avdp 3V0(V0) dp 3B(Vo) T ap (VO)
2
__yd_ _pydpdn _ 2 (V)3 2 3.4 ...
B=—V@=-vZU=2 (VO) (Cy + 2Cm + 3Can? + 4Can3 + )
2 3
B0:§C1 C1:5B0 (15)

2

dB 4 1 |4 V\3
Z= 22 (V—0)3 (Cy + 261 + 3Con? +4C,° + ) + = (V—0)3 (2C, + 6C,n + 12C4n% + )

2

= 2 (L) (= (Cy +2Con +3Con? + ) + (2)° 2C; + 6Con + 12Cen% + )]
VO VO

N

BgzgiBo(—cl+zcz); CZ=§<61+ "B;;B‘/))z(%gBé) (16)
d?’B 4 .1 dB [V : 2 (V : :
= e () + S ()= €+ 26m +3Cm7 + ) + (1) 2C, + 6Can + )
: 2 )
s (S e +6cm+ )5 (5) - 5 () @6 +6Cm+-)

2

() 6+ 2acm+ ) & (Vlo)g]

//=£Bo __&Lcs__i_/i
Bo < 3B2>( Ci+26) + ( 3B0+B0)_ 9B§[ (B0+3)Cl

9 0
+ (2B} + 4)C, — 4C]

C; = % [Z B, ?Bo/ — (B/ )C1 + (ZB +4)C] =+ (‘ By*Bo +2 By, +§BOB(/)+%BOB(%)

1 9 , 9 ;2 9 1,9 ., 9 _,2 9
= - By + EBOBO+1—680BO +—-BoBo' = By(5+; By + — By” + - Bo')

9 9 _,
= Bo[1_6 + 1_6]30 288, (Ci111 + 8C1112 + 6C1195 +12C1123)]

#Bol=— 932 (B +2) €y — (2Bg + 4)C; + 4C5]

’ 1
_E [1 - 9BO 9B02 + E(Cllll + 8C1112 + 6C1122 + 1261123)]



1 1 , , 1
=5 [5 = Bo— Bo” + 55 (Ciuna + 8Ciana + 6Ciazg + 12C1103)] (17)

The above Eq. 17 calculates the second pressure derivative of the bulk modulus measured at zero
pressure from the knowledge of the initial bulk modulus B, and the first pressure derivative By.

The expressions in the parenthesis in Eq. 17 can be converted into the forms of using Sijxm by
using the relations

Covi= — Caﬁcyvcu/lsﬁyu (18)

Analogously Svyr = — SvaSpySaulapa - (19)

This author used the theoretical data for the fourth order Cij for Aluminum and Silicon crystals
in quite- recently published article by A. Pandit and A. Bongiorno in [11], who cited as Cii11 =
10102 GPa, Ci112 = 2210 GPa, Ci122 = 2441 GPa, Ci123 = — 609 GPa for aluminum crystal and
Cii1 = 2586 GPa, Ci112 = 2112 GPa, Cii22 = 1885 GPa, Ci123 = 576 GPa for silicon crystal. For
B, and B(/) data, this author cites his article in aplgllc.org/publications [12] with the title
“Coefficients of Equation of State Expressed in Higher-Order Elastic Constants™ as By = 75.7
GPa and Bé = 4.16 for aluminum crystal and B, = 98.0 GPa and B(/) = 4.24 for silicon crystal.
Then, Eq. 17 finally yields

Bo/=— 0.0551 for aluminum crystal (20a)
Bo’ = — 0.2256 for silicon crystal (20b)

Both Egs. (20a) and (20b) is a crude theoretical estimate for Bo”. A possibility is open in the
future that FOEC could be determined experimentally with reasonable accuracy. Then, Bo” would
be determined with better accuracy.

In the near future, a paper dealing with the Young’s modulus and Poisson’s ratio will be
formulated under uniaxial loading applied to a material of orthotropic or higher symmetry.
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