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19.1. INTRODUCTION

Acoustoelasticity is a branch of physical acoustics that deals with the variation of
sound speed with elastic deformation and the relation between the wave speeds and the
strength of materials in a stressed state. In this chapter we consider the acoustoelasticity
of both bulk and surface acoustic waves in a homogeneously deformed elastic body and
the determination of elastic stiffness coefficients from measurements of phase velocity
of sound waves,

Properties of materials, including the strength of materials, change under stress.
The changed strength reflects not only the internal strength change brought upon by
the changes in internal structures, such as the change in interatomic and intermolecular
distances, but also the stresses acting on the medium, whether the stresses are externally
applied or internally locked. The internal change in strength can be described by
using the thermodynamic elastic coefficients Cyjy, and the overall strength change is
described using the effective elastic coefficients K. The strength change brought upon
a material by the acting stresses varies linearly with those stresses. However, in general,
the internal strength varies nonlinearly with stress, so do the effective elastic coefficients
with stress. When a small-amplitude sound wave propagates through a stressed medium,
the strain caused by the propagating wave must overcome a restoring force of both
internal strength and acting stresses. Therefore, the density times the square of the
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phase velocity of the sound wave represents the effective elastic coefficients, rather
than the thermodynamic elastic coefficients it represents in a stress-free material.

The strengths of a material under adiabatic and isothermal processes are not equal.
To account for the difference, the theory must be based on thermodynamic potentials,
e.g., the internal and free energies, enthalpy, etc., rather than on a mechanical elastic
energy density that ignores the entropy and temperature. Voigt [1] discussed the theory
of thermoelasticity based on the thermodynamic potentials for the case of infinitesimal
strains measured from the reference configuration of the stress-free natural state. For the
case of finite deformation from the natural or the initially stressed state, his approach
is quite inadequate, and it is better to use the thermodynamic potentials referred to the
initially stressed state. Quite recently, Kim [2] described the theory of the thermoelas-
ticity of an elastic solid in an initially stressed state in detail. In the thermodynamics
of fluids, the stress acting on the fluids is isotropic (hydrostatic) pressure p, and its
conjugate variable is volume V. Both p and V are scalar and can always be referred
to the same current configuration under an arbitrary pressure. However, in a finitely
deformed solid, the Cauchy stresses, corresponding to the hydrostatic pressure, are
always represented using the current configuration, and representation of the strains
requires a reference state that differs from the current configuration. Thus the strain and
the Cauchy stress are not thermodynamic conjugate variables. With respect to a strain,
it is necessary to define a thermodynamic conjugate variable, which refers to the same,
initially stressed configuration to which the strain is referred. The conjugate thermo-
dynamic variable is called the thermodynamic stress (second Piola—Kirchhoff stress),
which is related to the Cauchy stress by the equation derived by Murnaghan [3]. The
(n — 1)'th (n > 2) Lagrangian strain derivatives of the thermodynamic stress are called
the n’th thermodynamic elastic coefficients, and the (n — 1)’th (n > 2) derivatives of
the Cauchy stress with respect to the infinitesimal strain are called the effective elastic
coefficients.

As already mentioned, the strength of a material under stress can be characterized
by the second-order effective coefficients K. Although in principle one can extend
the definition to the third- and higher-order thermodynamic or effective coefficients
in an initially stressed state, their utility is of limited value, except for the third- and
higher-order thermodynamic constants defined at zero stress. Here, instead of defining
third- and higher-order elastic coefficients in the initial state, we relate K coefficients
defined in the initial state both to the second-order elastic constants (SOEC), third-
order elastic constants (TOEC), and higher-order elastic constants (HOEC), all defined
in the natural state, and to the initial strains referred to the natural state, as long
as the deformation from the natural state to the initial state is a smoothly varying
elastic process. However, this chapter does not intend to tabulate these relations for
all kinds of symmetry groups and crystal classes. For rubberlike polymer materials
and in the vicinity of a phase transformation or the critical phenomenon of ordinary
solids, this relation using the SOEC and HOEC is no longer valid. However, one
can still study the strength of rubberlike polymers and the phase transformation of
ordinary materials by investigating the behavior of K versus stress for the former
materials and the behavior of K across phase transformation stress for the latter
materials.

From the atomic point of view, especially in the language of lattice dynamics,
TOEC and HOEC represent anharmonic effects of solids. Since the elastic waves are
in leading harmonic approximation, the same as the long-wavelength acoustic phonons,
K, TOEC and HOEC are related to the phonon frequency distribution versus strain,
phonon lifetimes, thermal expansion, thermal conductivity, etc. The atomic theory of
the strength of solids lies outside the scope of this chapter. Interested readers are
referred to [4, 5, 6]. Acoustoplasticity, which deals with the relations between sound
speed and plastic deformation, is also outside the scope of this chapter, which is solely
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devoted to elastic deformation. This chapter is centered around the phenomenological
relations between Ky and the stresses exerted on a medium, the determination of
K from the measured phase velocities, and the possible determination of applied
or residual stresses from the observed phase velocities of bulk and surface acoustic
waves,

19.2. THERMODYNAMIC AND EFFECTIVE ELASTIC
COEFFICIENTS

Consider a prestressed elastic body that has undergone an arbitrary homogeneous defor-
mation U’ from the stress-free natural state. The Cartesian coordinates of a particle in
the natural state are denoted by vector a. The prestressed body is said to be in an initial
state, which is a static state denoted by the Cartesian coordinates X. The initial state can
be any state, which can include the natural state, since U’ is arbitrary. Finally, a small
deformation u is superposed on the initial state. We call this state a current or present.
state and denote its Cartesian coordinates by x. We denote the density of the natural,
initial, and current states by p,, px, and p;, respectively, and the Cauchy stresses in
the corresponding states by o; j(a), 0;;(X), and o0;;(x), respectively. Deformations u,
U, and U’ are expressed as

u=x-X U=x-a U=X-a (19.1)

Let a tensor T(A;B) denote a physical variable, which is evaluated in the state
represented by a coordinate system A and which takes B as a reference coordinate
system from which a deformation is measured. Both A and B can be x, X, or a. When
both A and B are represented by the same coordinate system, we denote the tensor T
by a single argument, as shown in the examples T(a; a) = T(a), T(X; X) = T(X), and
T(x; x) = T(x). The Cauchy stresses o;;(a), 0;;(X), and o;;(x) are the typical examples
of this representation and are always evaluated at and referred for deformation to the
same coordinate system.

The Lagrangian strains ;;(x; X) and ¢&;;(x; X), both evaluated in the current state x
and referred for deformation to the initially stressed state X, are given by

=L (B ) L (0 o

ax;ox; V) T 2\ax; T ax; T ax; ex,
1 auk 3uk
=g, 4 2 Ok Ol 19.2
G 2K, X 192
&ij(x; X) = (8u;/0X ; + 3u;/3X;)/2 (19.3)

The Lagrangian strains ¢;;(X; a) and the infinitesimal strains &;;(X;a) are obtained by
replacing in Egs. 19.2 and 19.3 X, X, and u by X, a, and U’, respectively. In Eq. 19.2
and henceforth, it is understood that the Einstein’s convention on the summation over
the repeated indices is implied, unless otherwise specified.

With reference to the initial state, we define according to Brugger’s convention [7]
the thermodynamic stress 7;;(x; X) and the adiabatic and isothermal thermodynamic
elastic stiffness/compliance coefficients Cyjy and S of the n’th (n > 2) order as

aUu aF
7;j(x; X) = o, (a_g—) = py (52-) (19.4)
)7 Sx 1/ Tx
C. . X) = py(@"U/851j0u .. s = @7l /0%u -~ Jsx (1 22)  (19.5)
Clu. (% X) = px(3"F /8500 .. Iroc = @Ot) /&u .. Jrx (122)  (19.6)

ijk
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3. X) = —px(8"H /379ty . . Jsx = @ oty .. Jsx (n 2 2) (19.7)
ST (x:X) = —px(3"G/B1i;9u . - Jrx =@ 0 e (12 2) (19.8)

where U, F, H, and G are, respectively, the internal energy, Helmholtz free energy,
enthalpy, and Gibbs free energy per unit mass. S denotes the entropy and T the temper-
ature. Both C,.Tjk‘}{_s and S,.Tjk‘,’f_‘s coefficients are generally a function of stress. In the
special case of the initial state being identical to the stress-free natural state a, the
quantities given in Eqs. 19.4— 19.8 are defined by replacing X by a.
The special types of thermodynamic elastic stiffness coefficients are the SOEC and
the TOEC defined as
Cidr Ta) = Cf T(asa) o T (@) = S T(a;a) (SOEC)  (19.9)

i

Con T @) = Chi (a3)  Sjiin (@) = S T (a;a) (TOEC)  (19.10)
which are all evaluated at and referred to the stress-free natural coordinate a. When
the superscript S or T is omitted in the notation of the elastic stiffness and compli-
ance coefficients, it is understood that they refer to both adiabatic and isothermal
processes. The SOEC satisfy the full symmetry relations in their subscript indices
and can be abbreviated using the Voigt notations. The SOEC matrices [Cop(a)] and
[Sap(@)(a, B = 1,2, ...6) are symmetric, i.e., Cap = Cpo and Syp = Spa, and have in
general 21 independent elements. They satisfy the reciprocal relation S.8Cpr = Sars
where & denotes the Kronecker delta. Differentiating this reciprocal relation with respect
to Lagrangian strain £, (x;a) yields

Saﬂy(a) = “Sal(a)sﬁu (a)Syu(a)C).uv(a) (19 1)
Capy(@) = —Cun(a)Cpu (8)Cy(8)S10v(2) (19.12)

Equations 19.11 and 19.12 indicate that one can determine the set of the compliance
SOEC and TOEC from knowledge of the set of the stiffness SOEC and TOEC, and vice
versa. Both TOEC C,gp,(a) and Sapy(a) sets have in general 56 independent elements.

Equation 19.4 indicates that the thermodynamic stress depends on the choice of
the reference coordinate system for deformation. For example, 7;;(x;X) is related to
1i4(x; @) through a coordinate transformation by

7% X) = x————'—a-—'rk,(x; a) (19.13)
Similarly, one obtains
Ci(X) = Ciu(X; X) = = — % == ——Cmpg(X; 8) (19.14)

which can be expressed via Eqs. 19.5, 19.6, 19.9, and 19.10 in terms of the SOEC and
TOEC as
Px 3X,' 8X_,' an 3X{

Ci = e = e e [y mn pqrs rs (X 19.15
ikt (X) o0 B 30, 9, 3a, (Cornpg@) + Compgrs@rsKia) +...1 - ( )

A Cauchy stress 0;;(X) is equal to the thermodynamic stress t; iX) = (X, X)
and is related to the thermodynamic stresses Ty (X; ) via Eq. 19.13 by Murnaghan’s
relation [3] ‘

px 9X; 3X;

LX) = 7;(X) = 1, X) = S (X 19.16
O',J(X) Tt}(x) T,,(X,X) a day 3a; Tu ( a) ( )
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It follows from Egs. 19.4-19.10 that 0j(X) can be written in terms as the SOEC and
TOEC as

f . 1
O'ij(X) = 'p: Ez‘; "5;;‘ [Cklmn (a){mn X;a) + ‘i’cklmnpq(a)zmn X a);'pq(xy a) +...
(19.17)

We also define in the initial state X the effective elastic stiffnesses Ky and the
effective elastic compliances Qyy of the second order, which indicate the measure of
material strength in the initial state, as [8] ‘

Kijuw (X) = (807;/ e )x = Cipa (X) = 0;;(X)u
+ (/D)0 X)j1 + ou(X)sjx + o (X8 + 0 (X)8;]  (19.18)
Qi (X) = (3s:;/90u)x (19.19)

where & denotes a Kronecker delta. It is noted that while the full symmetry relations
Ciu = Cjin = C;jix = Cuij in the thermodynamic elastic stiffness coefficients defined
in Eqs. 19.5 and 19.6 are maintained, the full symmetry is lost in the effective elastic
coefficients K and Q;u, unless the stress acting on the specimen is hydrostatic, i.e.,
0ij = $8;;, where s is a positive or negative scalar variable. Kju obey the relations
Kju = K jiy = K jix along with ’

Kiju — Kuij = 8;jou — 8uoij (19.20)

© Ky and Q) satisfy the reciprocal relation Ko, Qs = 8ap Or [Qup) = [Kap]"‘, where
a and g are abbreviated Voigt notations (&, = 1,2, ..., 6).
_Itis readily shown from Eq. 19.18 that

Cu+top Cip—o Ciz—oy Cu Cis +os Ci5+06
Cip—-0p Cn+oy Cp-on Cau+o4 Cas \ Cas+og
Kapl = Ciz~o3 Cp3—o03 Cytoy  Cutoy Cis+os C3s
T {Cy4—~04 Cay - Cu Cys + (03 +03)/2 Cys +05/2 Cas +0sf2
Cis  Cxs-a5 Cys Cas +05/2. Css+(oy +03)2 Csg+ 04/2
Crg . C . CrTos Cag +0s/2 Css +o4/2 Ces + (01 +02)/2

(19.21)

where all the K,z elements are evaluated in the initial state X.
The in situ isothermal material strengths K75 and Q74 in an arbitrarily stressed initial
state can be obtained by very slow, static tension, compression, and torsion tests. It will
be shown in the following that elastic moduli obtained from ultrasonic phase velocity
measurements are not C3, but adiabatic effective elastic stiffness moduli K34 The
literature is arbitrary about the choice and definition of the effective elastic coefficient.
We choose Ky, defined by Eq. 19.18, as the effective elastic coefficients. There are
_ several reasons behind our choice: first, Ky represent the strength of a medium in
~ a stressed state; second, Ky reduce to the SOEC Ciu (a) in the special case of the
stress-free state; third, the density times the square of phase velocity measured in a
stressed state is equal to a Ky element or a combination of K elements, as will be
shown; fourth, K, are compatible with the definition of the efféctive elastic constants
originally introduced by Birch [9]; and finally, Kju fit consistently into the general
context of the thermodynamics of an elastic solid [2]. " : :
It is advantageous for the study of the wave propagation in a stressed state to define
in an initially stressed state X the isentropic elastic stiffness coefficients Bjy (X) =

B, (X; X) and AJ,,(X; a) as (8,10,11]

px32U
3(0xe /30X 1)3(3x; /3X ;)

B, (X) = ( )s-x = dioj(X)+ Cjy(X) (19.22)
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Aju(Xia) = (a(ax-k /8a;)3(dx;/3a;) / ¢.x

. 3X, 3Xk S R
= diti(X;a) + @@C”"'(X’a) : (19.23)

19.3.. EQUATION OF MOTION IN AN INITIALLY STRESSED
STATE
Using BS,(X) in Eq. 19.22 and A5, (X;a) in Eq. 19.23, the linearlized equations of

i
motion about the initially stressed state can be written as [8,10,11]

32).‘k
=5, S : 19.24
pxi; = Bjy (X) 3%, %, ( )
x;
L S .
Paki = Ay (X B)W (19.25)

- By seeking small-amplitude plane wave solutions for Eq. 19.24 in the form of

x; — Xi = wexplio(t — nX;/V)} (19.26)

one obtains ' ,
(B (Xdnjn; — pxV28ulu = [ijk,(X)n = {px V= o (Xn jnt)&‘k] u =0
, (19.27)

Similarly, assuming the solutions for Eq. 19.25 in the form of

X — X = u; explio(t — mas/W)) - (19.28)
yields : : -

(A (X; a)mjmy — pW8iJux = 0 (19.29)

In Egs. 19.26-19.29, n and V denote the actual direction and phase velocity of wave
propagation in an initially stressed X, respectively, and m and W are the corresponding
direction and velocity in the natural configuration a. Denoting a transit time of the plane
wave and its acoustic path length in the initial state X by v and Ly, respectively, and
the corresponding acoustic path length in the natural configuration by La, it follows
that V = Ly/r and W = L,/t. Thurston and Brugger [11) call W the natural velocity.

In the special case of the initial state X being identical to the stress-free natural
state, both Eq. 19.27 and Eq. 19.29 reduce to the Christoffel equation

[Cyu @)mjmy — poV28uUx =0 (19.30)

where Cjjy(a)m;m; is called the Christoffel tensor with an eigenvalue paV? and an
eigenvector Uy,

Eq. 19.27, derived in the initial state X, can be interpreted either as having an effec-
tive Christoffel tensor By, (X)n;n; associated with an eigenvalue pxV? or as having
an effective Christoffel tensor Cyu(X)n;n; associated with an eigenvalue pxV: —
o (X)n;n;. As shown in Section 19.5, the latter interpretation is particularly useful in
checking out the solution of surface acoustic wave (SAW) propagation on the surface
of a prestressed elastic body. . » . ‘

Toupin and Bemstein [10] transformed Eq. 19.29 into a representation that depends
only on the strain from the natural state a, independent of rotation from a, by trans-
forming u via u; = (8X;/3a,)U ,. Thurston and Brugger [11] made use of the trans-
formed representation for the determination of the TOEC, since one can see from
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Egs. 19.29, 19.23, 19.5, 19.9, and 19.10 that pressure, stress, or strain derivatives
of p,W? taken in the stress-free natural state are expressed in terms of the SOEC
and TOEC. The method of Thurston and Brugger has the advantage that, given the
acoustic path length L, in the stress-free state, it requires only the measurement of
ultrasonic transit times r for a stressed specimen, obviating the need to measure actual
acoustic path lengths Ly. Further details using Eq. 19.29 on the TOEC are provided by
Wallace [12] and in Chapter 21 by Breazeale. An early determination of a complete set
of three TOEC for some isotropic materials in the natural stress-free state was achieved
by Hughes and Kelley [13] from the measured dependence of bulk wave speeds on
uniaxial stress, using Murnaghan's theory of finite deformation [3], and a complete set
of six TOEC for a cubic crystal was first measured by Bateman er al. [14), using a
germanium crystal as a specimen and formulas developed by Seeger and Buck [15].
Since then, there have been numerous publications on the TOEC of a variety of mate-
rials, and they are compiled by Every and McCurdy [16].

Useful as the concept of natural velocity W and p,W? for determination of the
TOEC is, neither W nor p,W? is an actual physical quantity. For an investigation of
the in situ strength of materials, phase transitions, equations of state of solids, surface
acoustic waves (SAWs), residual stresses of structures, etc., under general stresses, it
is useful to look at the behavior of the effective elastic coefficients K (X) defined in
Eq. 19.18, as these coefficients are generally nonlinear functions of stress and behave
even anomalously in the vicinity of phase transition stress {17]. In the next sections
we will discuss a determination of Kjj;(X) using bulk waves and the propagation of
SAWs in the initial state X.

19.4. DETERMINATION OF EFFECTIVE ELASTIC
COEFFICIENTS USING BULK WAVES

19.4.1. General Formulation Using the Wave Propagation
Coefficients ‘

The effective elastic coefficients K (X) defined in Eq. 19.18 can be obtained from
B;j.k, (X) coefficients, which are determined via measurements of phase velocities V of
bulk waves of either the longitudinal or transverse mode using Eq. 19.27. However, the
Bisjkl (X) coefficients in Eq. 19.22 lack the full symmetry found in the Cjyy coefficients
shown in Eq. 19.15 and cannot be abbreviated using the Voigt notation. Following
Huang [4,18], we introduce a new set of elastic stiffness coefficients CCyy called the

wave propagation coefficients, which are defined as
Cir (X) = [BS;;(X) + B 1 (X)1/2 = 8;jou (X) + [Ciyy X) + € (X))/2 - (19.31)
Using the C‘,jkl coefficients, the equation of motion in Eq. 19.24 becomes

32u,~
X 0X;

pxit; = Ciu (X) (19.32)

Note that C‘,-jkl =C ity and éq‘kl =C; itk c yu coefficients obey the Huang’s conditions

Cint — Cuij = Cap — Cpa = 8ijau — Sucij (19.33)

where the subscripts « and g (@, = 1, 2...6) are the Voigt indices. When the stresses
acting on the medium are hydrostatic or zero, Huang's conditions become zero and
then the wave propagation coefficients Cjyy possess the full symmetry relations as
found in the Cyyy coefficients. Solving Eq. 19.32 with the plane waves described in
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Eq. 19.26 yields
(éijklnknl —oxV36iu; =0 (19.34)
det|T';; — pxV?8;;1 =0 (19.35)

where I'j;(n) = 6“,«;unkn, is the symmetric acoustical tensor whose eigenvectors are
the possible directions of particle displacement and whose eigenvalues are the corre-
sponding values of px V2. In terms of abbreviated Voigt notations a and B, I';; is written
as Tj = [y = CogNp, where Ny = n?, N2 = n3, N3 = n}, Ny = 2nyn3, Ns = 2nn3,
and N¢ = 2nn;.

Both Cyy and K coefficients obey the same symmetry relations and the same
Huang’s conditions, as shown in Egs. 19.33 and 19.20. Huang’s conditions impose
10 independent constraints on the [C’.,,p] and [K,p] coefficients. Therefore, both 6x6
arrays [5’.,,9] and [Kqg] have the maximum of 26 independent elements. It is readily
shown from Eq. 19.31 that the 6 x 6 array [Cp] can be written as

Cih+o Ces+o2 Css+os Cs6+ 04 Cis+o0s Cig+ 06
Ces+01 Cn+oz Cu+o Cou+ 04 Cas+ 05 Cas +06
[Capl = Css+01 Cauato; Cutos C3a+04 Cis +0s Cas + 06
Css Ca Cu (Ca3 +Cas)/2 (Cas+ C36)/2 (Cas + Ca5)/2
Cis Cas Cis  (Cas+Ci6)2 (C1a+Css)/2 (Cra+ Cs6)/2
Cis Ca6 Cis  (Cas+C25)/2 (Cra+Cs6)/2 (Cra+Cos)/2
(19.36)

where all [éaﬁ] elements are evaluated in the initial state X. Comparison of Eq. 19.36
with [K,p] in Eq. 19.21 indicates that many elements of [K,s] are respectively equal
to an individual element of [(:‘,,ﬁ] and the rest of the [K,p] elements can be simply
expressed as a linear combination of two elements of [éap]. Thus, if one obtains [C ol
from the phase velocity measurements via Egs. 19.34 and 19.35, all the elements of
[Kp) can also be determined from the [C,,,;] coefficients.

19.4.2. Formulas for a Stressed Orthotropic Medium

An isotropic material in the stress-free natural state behaves under unequal biaxial or
triaxial stresses as if it possessed orthorhombic symmetry, which is characterized as
satisfying the zero Huang’s condition. A material of cubic, tetragonal, or orthorhombic
symmetry in the natural state behaves under unequal biaxial or triaxial stresses also
like one of orthorhombic symmetry but not exactly, when the principal stress or strain
directions coincide with those of the material symmetry in the natural state. However,
these materials under biaxial or triaxial stresses satisfy the nonzero Huang’s condi-
tions (Eq. 19.33). Such materials, which obey the nonzero Huang’s conditions, are
said to possess orthotropic symmetry. We choose the principal stress directions in
an orthotropic material as the coordinate system. Then o;; = 0;8;; (i not summed;
i=1,2,3)and ;(X;a) = £;(X;a)s;; (i not summed), where o; and £;(X;a) denote a
principal stress and a principal strain, respectively. For an orthotropic medium, there
are a total of 9 nonzero independent [Cqp] elements: Cyy, Ci2, Ciz» C22 C, C33,
Cas, Css, Ces, and there are a total of 12 nonzero [K.4] elements: K, K12, K13,
K1, K22, K23, K31, K32, K33, Kas, Kss, and Kes, among which 11 are independent,
because the Huang’s condition K1p — K21 + K23 — K3 + K31 — K13 = 0, as can be
seen in Eq. 19.20, holds. An isotropic material in the natural state behaves under two
equal (07 = 07, which may be zero) principal stresses and one unequal nonzero prin-
cipal stress o3 as a transversely isotropic material with nonzero Huang's conditions.
The transversely isotropic material in this case has five [Cyp] elements: Cyu=0Cn,
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Ci2, C13 = €23, C33, Cag = Cs5, Ces = (Cyy — Cy2)/2. It is considered a special case
of orthotropic symmetry.

Explicit analytic expressions for [K,z] elements in terms of phase velocity can
be easily derived for stressed media with orthotropic or higher symmetry, where the
principal stress directions coincide with those of material symmetry and are chosen as
the coordinate system. Egs. 19.35 and 19.36 indicate that for a plane wave propagating
in the direction of the principal axes of orthotropic symmetry, the wave motion is either
pure longitudinal or pure transverse. Nine wave speeds V;; propagating along the X ;
direction with polarization in the X; direction are conveniently placed as the ij elements
in matrix form as

) Cii Cra Ci3
[e:Vil=|Cu Cn Cn (19.37)

LC31 Cx C33J

rKY K& KT
Loxl(Vy+ Vi) = | K, K5, KS (19.38
2px ij jitl= 66 22 44 -38)

LK K3, K3,

Once the diagonal elements of [K,g] are determined via Eq. 19.38 from the mea-
surements of phase velocities propagating along the symmetry directions, the off-
diagonal elements of [K,g] can be obtained from the phase velocity measurements
of quasi-longitudinal (QL) and quasi-transverse (QT) modes traveling in an oblique
direction on the symmetry plane of an orthotropic medium. For example, both K3, and
K3, can be calculated from the phase velocities of the QL and QT waves propagating
at an angle 0 to the Xy axis in the X X3 plane. In this case the solution of Eq. 19.35
yields

2V jor = (V3 + Vi) sin? 0 + (V33 + Vi) cos”0
+ ([(V2, — V%,)sin’ § — (V3; — V33)cos® 6]
+4[(K3,/ px) + V2,1 sin® 6 cos? 6)' 2 (19.39)
2V, or = (V] + Vi) sin® 0+ (V] + Vip)cos® 8
+ {[(V3, = V2))sin® @ — (V3; — V) cos 6]
+ 4(K3,/px) + V2,1 sin’ O cos® 6) /2 (19.40)

where % signs in front of the curly bracket correspond to the QL and QT modes,
respectively. Expressions involving K3,, K3, and K33, K3, are obtained by the proper
rotation of indices in Egs. 19.39 and 19.40.

Effective shear moduli X5, (e not summed; a = 4,5, 6) can also be determined
from shear-horizontally (SH) polarized, pure transverse (PT) modes propagating in an
oblique direction on the symmetry plane of an orthotropic medium. For a PT wave
propagating at an angle 6 to the X3 axis in the X, X3 plane with SH polarization in the
X, direction, the PT phase velocity Vs is given by

pxV35(8) = C 5in?8 + Cp3cos* 8 (19.41)

Similarly, the phase velocity of a PT mode propagating at an angle 8 to the X3 axis in
the X,X3 plane with SH polarization in the X, direction is expressed as

oxV2,(8) = C125in2 8 + C3cos? 6 (19.42)
4

In Eqgs. 19.41 and 19.42, the first subscripts 2 and 1 of V denote the X and X polar-
jzation directions, respectively, and the second subscripts 5 and 4 of V represent the

449




KIM AND SACHSE

X, X3 and X>X3 planes, respectively. Addition and subtraction of these two equations
yield

ox[V4(0) + V(O] = 2K 3 sin? 8 + [ox (V3 + V3)lcos’ @ (19.43)
px[V34(8) — V(O] = [px (V}, — V3)I(L + sin® 6)/2
+ (K55 — K33) cos? @ (19.44)

By measuring the phase velocities of SH polarized PT modes along at least two different
directions in the X, X3 and X,X3 planes, both K3 and K5 — K3, can be determined
via Egs. 19.43 and 19.44, respectively. K’ 5, and K3, can both be obtained similarly by
measuring the SH polarized PT phase velocities V3¢ in the XX plane.

Some of Huang’s conditions are known as the birefringence formulas in acoustoe-
lasticity, which are written as

Ciz—Ca =Ki2— Kz =02 — 0y
623 —Cp=Kn-Kn=03—0 (19.45)
Ca—Cu=Ki3—Ky=03—0;

It follows from Eqs. 19.36 and 19.37 that in the cases of PT waves propagating in
the principal stress directions of orthotropic media mentioned previously, Eq. 19.45
becomes

@ o—o1=px(Vh-V3) ®) os—0or=px(Vi~ V)
© o3—o1=px(Vi;—V3) (19.46)

More details and additional considerations on birefringence of stressed media are
provided by Tokuoka and Iwashimizu [19], Tokuoka and Saito [20], and Iwashimizu
and Kubomura [21]. Some useful acoustoelastic formulas for the case of a plate
subjected to biaxial plane stresses are found in the article by King and Fortunko {22].

For the homogeneously stressed orthotropic specimen previously considered, in
which the principal stress or strain directions coincide with those of orthotropic sym-
metry, it is convenient to introduce principal stretches 4; defined as

Aid;j = 3X;/8a; (i not summed) (19.47)
Principal strain and volume V (or density o) change are expressed in terms of A; as
Li(X;a) = (\F = 1)/2 (19.48)
J=IM =Yl=fi=ll)‘2k3 (19.49)
(a1, az, a3) Vo px

where J is the Jacobian determinant. Then the effective elastic stiffness coefficients
Kjju(X) are completely determined from measurements of the phase velocities and
principal stretches A;. Both Cj (X) and 0;;(X), appearing, respectively, in Eq. 19.14
and Eq. 19.17, are simplified to

Ci(X) = T jh ek Cija (X 8)
= I Ak jhehy [Ciw(@) + (1/2)Ciur @GF = 1) + .. ]

i.j, k)1 fixed) (19.50)
ai(X) = (/27732 [C;@05 - 1)+ (1/A)Cin @02 - DOZ =1 +...]
(i fixed) (19.51)
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LX) = (02 — 1)/2 = Si(a)7;(X; a) + (1/2)S:(a)r; (X: )7 (X: 2) + ...
= J [51)(@)a; (02 + (1/2)751@)0; K)o (KR4 + .. ]
(i fixed) (19.52)

The measured K, (X) are related to the SOEC, TOEC, and A; via Egs. 19.21, 19.50,
and 19.51. If one is able to invert Eqgs. 19.51 and 19.52 to express A; in terms of the
SOEC, TOEC, and the principal Cauchy stresses gy, (m = 1,2, 3), both C 1 (X) and
Kju (X) can be expressed in terms of the SOEC, TOEC, and the principal Cauchy
stresses. The analytical inversion is generally difficult to carry out. Rather, one may
choose to expand &;(X;a) or (k,? — 1) in a Taylor series of 0;(X)/Ej(a)(j = 1,2, 3),
where E;(a) is the Young’s modulus of the material in the X j direction in the natural
state, and then one tries to find the coefficients of the leading terms in terms of the
SOEC and TOEC.

Once all the elements of [Kf,ﬂ] are determined from the phase velocity measure-
ments, the elastic compliance [Qﬁﬂ] is obtained as its inverse matrix. Then use is made
by Kim er al. [2, 23] of the expressions for the Young’s modulus and Poisson’s ratio
for orthotropic media in terms of [K,s] elements. To find the Young's modulus E3 and
the Poisson’s ratios vj3 and v3 in the initial state, a small additional homogeneous
loading, which is described by 8o;; = do3(x) and u;; = £;(x; a)5;; (i not summed), is
superposed on the initial state along the principal X5 direction. The terms v;3, v,3, and
E» can then be written as

) =_(€_') _.,_[ﬂl_/_’_‘_!] I 4]
B= &/x dA3fs [ x Q33

_ (K™ KK — KipKn

K133 KuKzn —Ki2Ka (19.53)
&31x dis/A3 | x 033
(K3 KaKuy —KuKis
= T & Dy KuKa — Kk (19:54)
N .
des/x  lda/rislxy  Qn (K1)
= K33 — vi3K3 — vk (19.55)

where K,z elements are given in terms of Cyg and o; in Eqg. 19.21. The Young's
moduli and Poisson’s ratios in the X and X, directions, E;, E», v, v31, V2, and
V43, can be similarly obtained. Note that v;;E; # vj; E;(i # j) in the initially stressed
state, while they are equal for a medium of orthorhombic or higher symmetry in the
natural state. These quantities can be also expressed in terms of the SOEC and TOEC
of a material via Egs. 19.21, 19.50, and 19.51. Numerous thermodynamic relations
in a stressed state are also listed in [2], which includes the difference between the
adiabatic and isothermal values of Cqp, Kug, and Qqp, the bulk and Young's moduli,
and Poisson’s ratio in a stressed state. The group velocity formulas in terms of the
[Kqp] elements for an arbitrary direction on the symmetry planes of stressed media
with orthotropic or higher symmetry are given by Kim et al. [24]. Group velocities
are usually measured by a point source—point receiver technique, described in detail
in Chapter 4.

Many ultrasonic measurements of actual velocity V in lieu of the effective elastic
coefficients K, in orthotropic media were made to obtain the acoustoelastic constants
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necessary for estimation of the residual stresses locked in structures, in which nonde-
structive access to the natural configuration is very difficult to obtain. A detailed
description of ultrasonic measurements of residual stresses is found in the review by
Pao er al. [25]. Additional considerations of acoustoelastic waves in orthotropic media
are described in an article by Pao and Gamer {26].

19.4.3. Effective Elastic Coefficients Under Hydrostatic Pressure

When a stressed medium is under hydrostatic pressure p, i.e., 0;j = —pé;;, the Kiu
coefficients in Eq. 19.18 reduce to
Biwr = Cit + p(Bijdu — 8idj1 — 8adjx) (19.56)

It is readily verified that the B coefficients satisfy the full symmetry relations found in
the SOEC Cj (a) defined in the stress-free natural state. The phase velocity equations
corresponding to the Christoffel equation (Eq. 19.30) are obtained by replacing Ci (a)
by Bju in the Christoffel tensor, the wave normal m by n, and the density p, by px. The
elements of [B,p) are obtained by simply setting 0y =02 =03 = —p and 04 = 05 =
06 = 0 in the K,z elements shown in Eq. 19.21. An early ultrasonic measurement of the
[Bqs] of some cubic crystals under hydrostatic pressures was achieved by Lazarus {27].
The elastic coefficients and their pressure derivatives ordinarily quoted in the literature,
e.g., [16,28], are neither the thermodynamic coefficients nor their pressure derivatives,
but are [Ba(X)] and 3B,p/3p, respectively. [B,p(X)] are commonly denoted by using
upper- or lower-case “cee” in the literature.

The compressibility x in the initial state, which is the reciprocal of the bulk modulus
B(X), is expressed as

X = % =1 (-aﬁ> = Qi = 01 + On + 0 +2Qn+0x+0i3) (1957
P \3p/

where the effective compliance Qs elements are now obtained as the elements of the

inverse matrix [B.5(X)]~! and the symmetry property Qup = Qp under hydrostatic

pressure is utilized. Under hydrostatic pressure, the symmetry of a material and its

crystal structure are preserved. For all crystal classes except monoclinic and triclinic

systems, one finds

(dAi/d p)p=0 = (d%i/d p)p=0 = —[0i1 (@) + Qi2(d) + Qia(a)] (19.58)

where Q;;(a) = Qij(a;a)(i, j = 1,2,3) are the zero pressure effective compliance
coefficients. Note that in the natural state, Qnp(a) = Sqp(a), where Sqp(a) are the
thermodynamic elastic compliance coefficients at zero pressure. Applying Eqgs. 19.21
and 19.50 to the case of hydrostatic pressure, the difference between the pressure
derivatives of the effective and thermodynamic elastic coefficients (d/d p)[Bap(X) —
Cop(X;a)]p=0 can be evaluated in terms of the §;;(a) = §;;(a;a) and the SOEC
Cl4(a) = CTg(a;a). The difference is given in Table II of [8]. For materials of both
isotropic and cubic symmetry, the linear compressibility under hydrostatic pressure is
the same in every direction. Therefore, it follows that A = A) = A2 = A3 and ¢(X;a) =
£1(X; a) = &(X; a) = £3(X; a). The bulk modulus of a cubic material in the initial state
then simplifies to

B =[3(Q11 +2012)]"" = (1/3)(Bu1 +2B12) = 1 — 4B /3 = (1/3)(C1y +2C 2 + p)
(19.59)

where the adiabatic shear modulus

B° = (B} — BL)/2 = pxV7] (19.60)
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can be determined from the phase velocity Vr of a pure transverse wave traveling along
the < 110 > direction and polarized in the < 110 > direction of a cubic crystal. Detailed
ultrasonic measurements under high pressure are provided in Chapter 20 by Bassett.

19.4.4. Experimental Methods for Measuring Effective Elastic
Coefficients

It is noted that determination of K (X) coefficients from phase velocity measurements
also requires knowledge of the actual acoustic path length Ly and the density py in the
stressed initial state, since only transit times t of sound waves are usually measured in
ultrasonic experiments. Because the initial state is static, both Ly and px are usually
determined by static measurements of the principal stretches A; or the dimensional
change of a specimen. The static measurement techniques for dimensional change lie
outside the scope of this chapter. Under hydrostatic pressures, the relations for density
or volume change versus pressure are known as the equations of state of solids, among
which are the well-known Mumaghan’s first- and second-order equations [29] and
Birch's equation of state [9,30]. Cook [31] devised a clever procedure for calculating
the dimensional change A; in cubic, hexagonal, and transversely isotropic materials
at any pressure from the measured ultrasonic transit time data versus pressure and
the knowledge of dimensions and the density in the reference state. Thurston [32]
calculated changes in lattice parameter or A; with hydrostatic pressure from the SOEC
and TOEC data of materials having various crystal symmetries. Analogous nonlinear
equations of state under uniaxial homogeneous loading for cubic and isotropic mate-
rials, say, in the X3 direction, have recently been provided by Kim and Sachse [33],
who expressed o33(X), Poisson’s ratio, Young's modulus, and px/p, in terms of the
strain £33(X; a) or A3, the SOEC, and the TOEC.

Below the elastic limit of ordinary materials, such as strong metals, ceramics, and
covalent materials, a fractional change in transit time t is quite small and is typically an
order of a few percent. However, this is not the case under high hydrostatic pressures,
which suppress plastic deformation and can thus be applied well over 400 GPa [34], under
which the elastic constants may well change by many times their atmospheric values. Even
under hydrostatic pressures under 1 GPa, a fractional change in transit time is substantial
for soft materials such as alkali metals and some alkali halides. For the universal detection
of a small change in transit time under a general stress, it is essential to use ultrasonic
instrumentation that provides high accuracy in transit time measurement.

A variety of ultrasonic techniques capable of accurately measuring transit times
have been developed over the last half-century. Details of some of these methods are
provided in Chapter 2 by Papadakis. Most of the accurate measurement techniques
are based either on resonance or on interference of ultrasonic beams that reverberate
inside two parallel opposite faces of a specimen. Here we briefly mention five different
techniques that provide an accuracy in r measurement better than one part in 10* in
their refined forms and that can be easily adapted for transit time measurements under
a general stress. The Brillouin scattering technique, which lacks accuracy in sound
speed measurement, is also mentioned because it may be the only possible technique
for measuring the elastic constants of a tiny sample of size less than 0.1 mm® under very
high pressure inside a diamond anvil cell, where electrical feed-through and attaching
acoustic transducers are difficult to realize. Very large changes in elastic constants that
may be many times those at atmospheric pressure override the lack of accuracy in
sound speed measurements in the Brillouin technique.

19.44.1. Phase Comparison Method

The phase comparison method developed by Williams and Lamb [35] uses the double
pulses generated by double gates. The double pulses with the same rf carrier frequency
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with a much lower pulse repetition rate are applied to a transducer that is directly
bonded to a specimen. A gate 1 is first opened and an rf burst signal is applied to the
transducer, which results in the echo trains. The time at which gate 2 opens is delayed
by nearly one round-trip interval, so that echoes are aligned and are superposed to
interfere with each other. The carrier rf frequency is varied until phase cancellation
occurs, and a sequence of nulls is produced by destructive interference by adjusting a
carrier frequency. From the sequence of the carrier null frequencies the phase velocity
of a specimen is calculated following the analysis by Williams and Lamb. An advantage
with this method is that it can take care of the phase shift due to the bond of the
transducer on the specimen, and the null frequency of the rf (about 10 MHz) carrier
can be determined with high precision.

19.4.4.2. Pulse Superposition Method

The pulse superposition method developed by McSkimin [36, 37] differs from the
phase comparison method in that the pulse repetition frequency (PRF) of the pulse
oscillator is crucial to the constructive interference among the successive echoes and
the measurement of transit time t, rather than the frequency of carrier. The cw oscillator
of carrier frequency is pulsed by the pulse repetition oscillator at a PRF of 1 MHz or
less and drives the transducer. In principle, the period of the PRF is adjusted to be
equal to some integral number of round trips in a specimen. When this condition is
achieved, the applied pulses are superposed on the specimen echoes. In practice, it
is preferable to operate with this integer equal to unity, for then the greatest amount
of energy is impressed upon the specimen. To observe the echoes on an oscilloscope,
a window is placed in the sequence of applied pulses by applying a gating voltage
derived from the oscilloscope to the pulsed oscillator. Then one adjusts the PRF to
maximize the amplitude of the observed echoes. The measured period of the PRF,
equal to the reciprocal of the PRF, is related to the transit time ¢ by the formula
described by McSkimin, who provided correction for the phase shift due to the bond
of the transducer to the specimen.

19.4.4.3. Pulse-Echo-Overlap Method

This method is described in detail in the article written by Papadakis [38]. Two echo
signals of interest are made to overlap in the oscilloscope by driving the x axis with a
cw oscillator signal having a period equal to the travel time between the echoes. One
signal appears on one sweep of the oscilloscope, and the other signal appears on the
next sweep. The sync input of the oscilloscope is connected to the pulser triggered by
a frequency divider that divides the cw frequency by a large integer, e.g., 1000. The
pulser also drives the transducer attached to the sample. The echoes are amplified, fed
into the y axis of the scope, and displayed on the screen. Then the cw frequency is
adjusted such that the observed echoes are precisely overlapped. The round-trip travel
time of the echoes is a reciprocal of the cw frequency.

19.4.4.4. Sing-Around Method

In this system, two ultrasonic transducers, one acting as a transmitter and the other as
a receiver, are directly bonded to the opposite faces of a specimen. The essential idea
is to employ a signal from the receiving transducer in a feedback loop that triggers
the pulse generator so as to establish a pulse repetition frequency (PRF) at which a
pulsed signal is sent to a transmitter. When a steady-state condition is established, the
PRF is nearly 1/7. A greatly improved version was developed by Forgacs [39], who
introduced a second gate that selected one of the multiply reflected pulse echoes. When
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the n’th echo is selected, it has traveled a specimen (2n — 1) times, resulting both in
an increase of the effective length of the specimen and in attenuation of the signal that
triggers the next pulse.

19.4.4.5. Continuous Wave (CW) Resonance Method

In the basic CW technique developed by Bolef and Miller [40], both transmitting
and receiving transducers attached on opposite sides of a specimen are continuously
driven by the signals derived from a cw oscillator. Observation is begun only after a
steady state has been reached. As one sweeps the frequency of the cw oscillator, the
frequency spectrum of the received signal amplitude exhibits sharp peaks at frequencies
corresponding to the mechanical resonances that occur at integral multiples of half-
wavelengths of ultrasound. Actually, the specimen, transmitter, and receiver constitute
a composite oscillator. The problem of the electromagnetic crosstalk between the trans-
mitter and receiver has been eliminated in a sampled CW technique [41], which gates a
cw oscillator sufficiently long enough to establish a steady-state condition in the spec-
imen. Then the transmitter is gated off and the receiver is gated on to observe a decay
response of the transient signal on a sampling oscilloscope. A frequency spectrum
that displays sharp mechanical resonances is obtained as the transmitter frequency
is swept over the region of interest. Petersen et al. [42] improved the sampled CW
technique of Bolef and Miller by adopting up-to-date instrumentation with the super-
heterodyne phase-sensitive derector and gated integrator, which process a decaying
signal to provide the amplitude and phase of the signal after the transmitter gate is
off. Their system works well with noncontact EMATS (electromagnetic acoustic trans-
ducers), which require no coupling correction for an absolute v measurement. The
principles of the EMAT system are described by Dobbs [43], and the acoustoelastic
measurements using EMATs are given in detail in Chapter 11 by Alers and Ogi. The
EMAT system requires an electrically conducting surface of a specimen.

19.4.4.6. Brillouin Scattering Method

In this method [44], incident beams generated from a laser source pass through a
sample. The Brillouin frequency shift due to light scattering by thermal phonons of the
specimen is measured by employing some type of spectrometer or multipass Fabry-
Perot type of interferometer. The sound speed is calculated from the Brillouin frequency
shift data. The density of a specimen under high pressure is usually separately measured
by adopting an x-ray diffraction technique. The effective elastic constants are calculated
from the density, and sound velocity data thus obtained. This method is explained in

detail in Chapter 14 by Grimsditch.

19.4.5. Illustrations of Acoustoelastic Behavior

There have been numerous measurements of acoustoelasticity using one of the measure-
ment techniques described in the previous section. Since the early 1970s many authors
have performed measurements under uniaxial or biaxial stresses in an attempt to deter-
mine residual stresses [25]. Numerous measurements using either hydrostatic pressure
or both hydrostatic and uniaxial stresses were carried out after the Second World War
to study the properties of matter under high compressive stress [16]. Here we merition
a few examples that exhibit distinctly acoustoelastic phenomena.

Figure 19.1 shows the measurements of Egle and Bray [45], which display the
changes in the sound speed of five different modes in a specimen of railroad steel
under uniaxial loading in the axial direction X . The steel was isotropic in the stress-free
natural state and behaves as a transversely isotropic material under the uniaxial stress
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Fig. 19.1. Relative change in wave speed as a function of strain in a railroad steel specimen loaded
along the X direction. The first and second subscript indices in V denote propagation and polarization
directions, respectively, and these notations are opposite to those used in the text (from Egle and Bray {45]).

(o1 # 0, 02 = o3 = 0). The Young’s modulus E; and the Poisson’s ratio vy of the steel
in the natural state are respectively, 207 GPa and 0.296. In Figure 19.1, the first and
second subscripts in V;; (i,j = 1,2, or 3) indicate the directions of propagation and
the polarization of sound waves, respectively. As one might expect from Eqs. 19.36,
19.37, 19.38, 19.50, and 19.51, in a small stress range below the elastic limit of a steel,
the changes in sound velocities are small and linear with respect to strain or stress. Each
line in Figure 19.1 can be fit into the formulas developed by Hughes and Kelly [13] to
determine the TOEC of the railroad steel. It follows from the birefringence formulas,
Egs. 19.45 and 19.46, that when the changes in V), and V3, are small, the difference
in them can be approximated by

(8V12 — 8V VY = (V12 — V21)/V3 = Aoy — 02) = Aoy = Aer(X;a)/Eo (19.61)

where A is called the acoustoelastic constant, which can be expressed in terms of
the SOEC and TOEC [13,25], and Vg is the shear wave speed in the stress-free
state. In Figure 19.1 the acoustoelastic constant A of the railroad steel is found to
be 0.0064(GPa)~!.

Hsu [46] generated two-dimensional inhomogeneous stress fields in two aluminum
disks by compressing diametrically along the uniaxial direction X,. The differences
between biaxial principal stresses, oy — 07, are obtained from the measured shear wave
speeds, Vi and V;, and the acoustoelastic constant A (refer to Eq. 19.61) obtained
from uniaxial homogeneous stress tests. The pulse-echo-overlap method [38] was used
to measure the ultrasonic transit times. The size of the shear transducer is relatively
small in comparison with the diameter of the disk. As shown in Figure 19.2, the
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Fig. 19.2. Distribution of (o7 — 03) along a horizontal diameter of two aluminum disks under
vertical diametric compression. Solid fines are calculated according to linear elasticity theory. Points are
measured triggering-frequency differences; arrows on the horizontal axis indicate the location of the center

of the transducer during the test (from Hsu [46]).

measured differences o) — o5 are generally in good agreement with the values predicted
from linear elasticity theory. Okada [47) carried out an acoustoelastic determination
of stress in slightly orthotropic materials using orthotropic acoustoelastic relations and
the equations of equilibrium in the initial state.

It is noted that a material, after it undergoes plastic deformation, is no longer
considered to be the same material with the same structure in the context of acoustoe-
lasticity, unless it is a perfect single crystal free of any defects and impurities prior to
plastic deformation. Plastic deformation, alters the microstructure of a material such
as, defects, voids, dislocations, distribution of precipitated particles, grain size and
orientation, texture, etc. Therefore, a plastically deformed material should in principle
be considered a new material in the sense that it is characterized by a new set of the
SOEC and HOEC, even though its overall chemical composition remains the same
before and after plastic deformation. In general, the TOEC and HOEC are much more
sensitive to a change in microstructure than the SOEC. One expects that the acoustoe-
lastic constants after plastic deformation also change and may be quite sensitive to a
change in the microstructure of a material. Acoustoplasticity lies outside the scope of
this chapter. Readers interested in this area are referred to [25, 48—50].

What prevents one from applying very high, distinctly nonhydrostatic stresses to a
material is the yielding of a material during plastic deformation. Hydrostatic pressure
keeps plastic deformation from taking place, and thus very high pressures exceeding
well over 100 GPa can be applied to a specimen inside a diamond anvil cell. It is usual
for many insulators to transform into a metallic phase under high pressures. Other types
of phase transformation, such as a change in crystal structure, order—disorder transition,
a change in magnetic phase, transition from normal to superconducting phase and vice
versa, solidification and melting, etc., can be induced by increasing or decreasing the

pressures applied to a specimen.
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Fig. 19.3. The effective elastic coefficients Cop and C' = (C1y — C12)/2 of BCC chromium versus
pressure p - py(Néel pressure) = 0.24 GPa at T = 298°K. The numbers on the bottom curves are: 1 with
propagation along [001] and polarization along [100]; 2 with propagation along [110) and polarization along
{001) (from Katahara et al. [51]}). .

When 2 material undergoes a phase transition under compressive stresses, some of
the effective elastic coefficients may exhibit an anomalous behavior, such as mode
softening around the phase transition and a sharp discontinuity in the first pres-
sure derivative at the transition pressure. Figure 19.3 shows the results of Katahara
et al. [51], which indicate an anomalous behavior of C); and the discontinuity in the
first pressure derivatives of Cy4 and C' = (Cy; — C12)/2 of BCC chromium as the pres-
sure increases across the Néel transition pressure py = 0.24 GPa at room temperature
(25°C). The elastic constants are measured by using McSkimin’s pulse superposition
method [36]. BCC Cr transforms from antiferromagnetic phase at atmospheric pressure
into paramagnetic phase above the Néel transition pressure. The cee’s in the figure are
actually effective elastic coefficients K,p or Bup. A behavior similar to that displayed
in C1,(p) of Cr about py is found in some Cqp(T) of many materials that undergo
phase transformation as the temperature T changes. Some alkali halides (e.g., potassium
and rubidium halides) undergo Martensitic phase transformation from the NaCl struc-
ture into a CsCI structure as the pressure exceeds a phase transition pressure at room
temperature. In these binary compounds the effective elastic shear coefficient B4 in the
NaCl phase becomes anomalously softer with increasing pressure (3f44/3p < 0) [16].

Figure 19.4 shows drastic changes in the three effective elastic coefficients of cubic
solid krypton (Kr). The effective elastic coefficients as a function of pressure inside a
diamond anvil cell were obtained by Polian er al. [52] using Brillouin scattering. The
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Fig. 19.4. The effective elastic coefficients (GPa) of krypton as a function of pressure (from Polian
et al. {S2]).

Brillouin frequency shift is measured by using a five-pass Fabry-Perot interferometer,
and the density change or the equation of state of Kr is obtained from energy-dispersive
synchrotron x-ray diffraction data. A small nonlinearity apparent in the behavior of
effective elastic constants versus pressure indicates that fourth-order elastic constants
should be accounted for in an acoustoelastic behavior of Kr. Above 30 GPa, C,; (or
B11) is seen to change more than 20 times over its lowest pressure values.

19.5. ABSOLUTE ACOUSTOELASTIC STRESS GAUGE

With advances both in metrology of dimensional changes A; and in accurate measure-
ments of ultrasenic transit times z, it is possible to accurately determine the absolute
stress or the absolute force acting on a specimen from the first principle of definition
without relying on calibration by dead weight or other means. An absolute change in
dimensions is usually measured using a laser interferometer, the stabilized wavelength
of which is precisely known. The ultrasonic transit times are usually obtained from
measurements of resonance frequencies that are precisely calibrated either with respect
to those of quartz or against the atomic clock.

In the case of hydrostatic pressure p applied on isotropic or cubic materials, p is
expressed as

A(X) Brdl A(X) BSdA
= =3 e 19.62
PX) 3/, Y /, 1+ A (19.62)

where the bulk modulus B is given in Eq. 19.59 and A, = 82B°T/(pC,) is a small
correction factor between the adiabatic and isothermal bulk moduli. Here 8 and C,
denote the bulk thermal expansion coefficient and specific heat at constant pressure,
respectively. The adiabatic bulk modulus B® is obtained as a function of A from
measurements of relevant phase velocities and dimensional change A via Eq. 19.59.
Then the absolute pressure p is calculated from Eq. 19.62. Ruoff et al. [53] constructed
an absolute pressure based on Eq. 19.62 using a cubic silicon crystal as a specimen. It
is considered one of the most accurate absolute pressure gauges.
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In the case of an orthotropic specimen that is uniaxially stressed, say, in the X3 direc-
tion, as conventionally found in a uniaxial tension and compression testing for materials
characterization, the Cauchy stress 03(X) is given via Egs. 19.55 and 19.46c by

; WX BT, MK ESda;
X) = 3 =/ I bt 19.63
o3(X) /, * L (L AAs (19.63)
03(X) = palM XA XA (X017 [V (X) — V(X)) (19.64)

where ES expressed in Eq. 19.55 can be measured as a function of A3 from phase
velocity measurements as explained in Section 19.4.2 and Aj is a small correction
factor between the adiabatic and isothermal Young’s moduli. The expression for Az
is given in {2], and its dependence on A3 may be ignored. If one measures static
dimensional changes including A3 and the relevant phase velocities of various modes
accurately, 3(X) can be obtained either from Eq. 19.63 or from Eq. 19.64. However,
because of a small difference between V3 and V3, below the yield stress of a material,
the accuracy in 03(X) measurements is expected to be much higher by using Eq. 19.63
than by using Eq. 19.64. Kim and Sachse [23] developed the theory of an absolute
thermodynamic—acoustoelastic stress gauge based on Egs. 19.63 and 19.64.

Consider a biaxially stressed orthotropic medium with two nonzero principal stresses
a1 and o, (03 = 0) whose directions coincide with those of material symmetry. The
phase velocities of QL and QT modes propagating in an arbitrary direction on the
symmetry plane, say, the X; X3 plane, are given by Egs. 19.39 and 19.40, which indi-
cate that the QL/QT phase velocities are expressed in terms of 6 parameters that include
four thermodynamic elastic coefficients Cyy, Ca3, Cy3, and Css, the density px, and
the principal stress oy, given that the principal directions are known. The phase veloc-
ities of QL and QT waves propagating in the biaxially stressed XX, plane, whose
principal stress directions are unknown, are expressed in terms of 10 parameters that
include six thermodynamic elastic coefficients Cyj, C22, C12, Cs6, C16, C26, the initial
density px, and the stresses oy, 012, and oy, With the X and X directions deviating
from the principal stress directions, the wave propagation in the X, X> plane is charac-
terized as having monotropic symmetry. These thermodynamic elastic coefficients, the
initial density, and stresses can be obtained by a nonlinear least-squares method, using a
modern high-speed computer equipped with large memory. The measured phase veloc-
ities of QL/QT waves propagating in various directions are fit to a nonlinear phase
velocity equation derived from Eq. 19.27 or Eq. 19.35 to find optimal values of these
multiple parameters, which minimize the sum of the square of differences between the
measured and calculated phase velocities. Degtyar and Rokhlin [54] investigated the
feasibility of this approach to determine the applied and residual stresses in anisotropic
materials. Tempting as this approach may be, many parameters that must be determined
by the nonlinear least-squares fitting and the small acoustoelastic effect of stresses on
the phase velocity result in large uncertainty in some of the determined parameters,
including the stresses.

19.6. ACOUSTOELASTICITY OF SURFACE ACOUSTIC
WAVES

A theory of surface acoustic waves (SAWs) in a homogeneously deformed semi-
infinite elastic medium was developed by Hayes and Rivlin [55], who considered also
the case of Love waves in a prestressed layer over a semi-infinite medium. SAW motion
is confined near the surface over a region of about one wavelength deep, and the SAW
behaves as an inhomogeneous wave with its amplitude varying along the depth, as in
the case of a stress-free half-space medium. The equations of motion (Egs. 19.24 and
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Fig. 19.5. Schematics of geometry of a surface wave over a deformed half-space.

19.32) are subjected to the constraint of a traction-free surface condition on propaga-
tion of the SAW. Let a unit outward normal to the traction-free surface be denoted
by N in the initial state X. As shown in Figure 19.5, on passage of the SAW, the
surface becomes slightly deformed into a traction-free wavy surface with a new unit
normal n in the current configuration x. The surface boundary conditions in the initial
and current configurations are stated, respectively, as N ;0;;(X) = 0 and no;;(x) =0,
which transforms into [55, 56].

N;Ciu (X) (0 /0X1) =0 (19.65)

We choose the initial coordinates X to be aligned parallel to the directions of the three
principal initial stresses oy, 02, and 03, and the X; axis to be normal to the traction-free
plane surface located at X, = 0 of a semi-infinite medium occupying X, > 0. For an
orthotropic medium as previously considered in the initial state X, the traction-free
boundary condition Eq. 19.65 at X, = 0 can be written as

upa+uy =0 Crynkra+Copusa=0 atX;=0 (19.66)

where u; ; = du;/9X ;.

We consider a SAW propagating at phase velocity V with wave vector k in the X,
direction of the orthotropic medium. In this case, wave motion of the SAW is seen to
be confined in the sagittal X, X, plane symmetry considerations and the SAW behaves
as a Rayleigh wave (RW) mode. By seeking the solution of a form

up = fi(X2)explik(X, = VD] (i=1,2), u3 =0 (19.67)

subjected to the boundary condition Eq. 19.66 for the equation of motion (Eq. 19.24
or 19.32), and discarding a degenerate case, one obtains the nontrivial solution [55].

212
(€551 +01— paV?) = €] (Chy+01 = pxV?)
= ngcgas(vaz — 0j )Z(Cfl + 0 - pr2) (19.68)

On the X, = O free surface, the corresponding effective elastic coefficients are Ky =
Ci + 01, Kap = Cap, Ky = C12, and Kes = Ces + 01/2, since o2 = 0 on the traction-
free surface. It is recognized that while the explicit dependenc; of the RW speed on
o1 is apparent in Eq. 19.68, the RW velocity is an implicit function of o3 through Cy,
which vary with oy and o3. The RW speed shown in Eq. 19.68 is non-dxspe‘rswe. .In
the special case of the initial state being stress-free, Eq. 19.68 becomes identical with
the RW equation in an orthorhombic half-space which was derived by Stoneley [57]
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and Royer and Dieulesaint [58], who considered also RW propagation along crystal-
lographic axes of cubic, tetragonal, and transversely isotropic media and along the
< 110 >-type directions of the former two media. The SAW propagation along the
surface of stress-free anisotropic media was summarized by Famnell [59]. Note that
the boundary conditions specified by Eqgs. 19.65 and 19.66 for a stressed orthotropic
half-space are essentially the same as those for a stress-free orthorhombic half-space if
Cjjir(X) and N are respectively replaced by Cy(a) and M, a unit outward normal to
the stress-free surface. Then the Christoffel equation (Eq. 19.30) becomes equivalent
to Eq. 19.27 if the eigenvalue p, V2 and wave normal m in Eq. 19.30 are respectively
replaced by ox Vi — 0;;(X)n;n; and n. One finds that Eq. 19.68 is obtained from
Stoneley’s result [57] by replacing Cap(a) and p,V? by Cap(X) and pxV?* — 01 (X),
respectively.

For a small change of RW speed in a stressed medium, which is isotropic in the
natural state, Hayes and Rivlin [55] assumed in Eq. 19.68 the foilowing dependence
of the RW speed V along the principal stress direction on two independent principal
strains:

pr2 = paV(z) + o181 + A28 (19.69)

and expressed a fractional change in RW speed, AV/Vy, as
AV V-V

@y 25} H
Ty = Ve = et (Zp,,V(z, - A) en(X;:2) (19.70)
where Vg, A, and u are, respectively, the RW speed and the Lamé constants in the
natural state a, £,; and &2, are the principal nominal strains (see Eq. 19.3), and & and
> are the constants determined from a complicated set of equations that involve the
SOEC and TOEC [55]).

Hayes and Rivlin’s result (Eq. 19.70) was first applied to study variations of RW
speed with uniaxially applied stress o) in an experiment by Hirao et al. [60], who used
the sing-around method [39] to measure the RW speeds. In the case of homogeneous
uniaxial initial stress oy(o3 = 0), Eq. 19.70 becomes

AV, Q) =~ Vot 11 :|
= £ = Ayo (19.71)
Vo [ 203 20+m] T
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Fig. 19.6. Relative variations of Rayleigh wave transit time 7 and velocity V versus the uniaxial
tensile strain. The strain ej; in the figure corresponds to £);(X;a) in the text (from Hirao er al. [60]).
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1 fa; — vy 1
Aj== 72
1=3 ( pViE, T3 +2u) (19.72)

where A is called the SAW acoustoelastic constant parallel to the loading direction, and
Ej and vy are the Young's modulus and Poisson’s ratio in the natural state, respectively.
Recalling that the specimen acts as a transversely isotropic medium about the X,
direction, one obtains in a similar way AV3/V, a change in RW speed in the X3
direction, by replacing in Eq. 19.68 C}; by C2 = C33, Cy3 by C23, and Ces by Cyy =
(C22 — C23)/2 and by setting 0y = 0. AV3/V is expressed as

AV;3/Vy= (V3 ~V5)/Vo=A4A,0 (19.73)

where A] is called the SAW acoustoelastic constant normal to the loading direction
and can be written in terms of the SOEC and TOEC. Using the SOEC and TOEC
data and vy = 0.284 measured with a mild steel specimen under uniaxial stress o,
Hirao er al. [60] obtained an expression AV/Vy = —0.31¢y; — 0.69¢3; = —0.11¢y;.
This is plotted in Figure 19.6 and is found in good agreement with observed variations
of RW speed with strain e;. (In Fig. 19.6, the strain e;; is actually the same as &,,.)
Hirao et al. [60] also considered the case of RW propagation along an inhomogeneous
surface layer. In the latter case the RW becomes dispersive and the RW whose speed
depends on frequency. The RW propagation along the inhomogeneous surface layer
was also investigated by Husson [61] by a perturbation method.

Iwashimizu and Kobori [56] investigated a SAW propagating in a general direction
away from the principal stress directions of a homogeneously deformed half-space
material, which is isotropic in the natural state a. In this case the SAW no longer
behaves as a RW mode and its polarization vector has a horizontal component normal
to the sagittal plane defined by the propagation direction and the normal to the traction-
free surface. A similar investigation on SAW propagation was extended to a slightly
orthotropic half-space in the natural state by Delsanto and Clark, Jr. {62], who used
a perturbation method. Bamnett, Lothe, and their coworkers [63, 64] extended Stroh
formalism [65] and developed the integral formalism for the solution of SAW problems.
The integral formalism of Bamett et al. was used by Mase and Johnson [66] to study
theoretically the SAW propagating on the prestressed surface of an anisotropic material.

One remarkable consequence of Iwashimizu and Kobori’s investigation is that under
the plane biaxial surface stresses o7;(X), 013(X), and o31(X), the phase velocity of a
SAW propagating along the direction X; at an angle 6 to the direction of principal
stress o) (the other principal stress being o3) is independent of the shear stress (or
strain) and its variation with stress can be expressed as as

AV(/Vy = Ao +AL033 (19.74)
Likewise, one obtains for the SAW propagating in the X3 direction
AV3/Vo =Ajos + A on (19.75)
The sum and difference in Egs. 19.74 and 19.75 are written as
(Vi +V3)/Vo =2+ As(on + 033) (19.76)
(Vi = V3)/Vo = Aglon — 013) (19.77)

where As = Ay + A, and Ay = Ay —A,. Since oy + 033 is rotation-invariant, V; +
V4 is independent of a rotation of coordinates. Eq. 19.77 can be considered a SAW
birefringence formula.

Two SAW acoustoelastic constants, Ay and A, are determined in a uniaxial calibra-
tion test by measuring the RW speed changes in the directions parallel and normal to
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the loading direction. Then both 0, and a33 are calculated via Egs. 19.74 and 19.75
from AV, and AV; measurements. The principal stress direction § is found where
the variations of the SAW speeds show symmetry about the direction. Then the shear
stress o3 is calculated from

o3 = (1/2)(0'11 — 033)tan 20 (1978)

Accurate measurements of SAW speeds were facilitated with advances in scanning
acoustic microscopy (SAM) [67—-69], and the SAM technique was adopted by Lee
et al. [70] and Okade and Kawashima [71] to measure variations of SAW speeds for
the determination of residual stresses. In a line-focus beam SAM [69] using water as
a coupling medium, the SAW velocity V(6) is calculated from the spacing Az of the
periodic dips of the transducer output voltage versus defocusing distance z via the

equation

V@) = Y (19.79)

VI-T=V,/QfA)P

where V,, is the sound speed in water and f denotes the carrier frequency of ultrasonic
tone bursts.

Figure 19.7 [70] shows the variations of measured leaky RW speeds parallel and
normal to the loading direction X with strain €;;. They are obtained with an aluminum
6061-T6 specimen, using the line-focus beam SAM. The acoustoelastic constants Ay
and A,, found by curve-fitting these data into Egs. 19.74 and 19.75, are —0.019
(GPa)~! and 0.007 (GPa)~.

As in the case of the bulk waves, the acoustoelastic effect on SAW speed below
the elastic limit of a material that is nearly isotropic in the natural state is so small
that the SAW is almost sagittally polarized, with a small horizontal component being
the order of the initial strain €;;(X;a) relative to the sagittal component, which is
unity. The opposite case arises in which a horizontal component of the SAW polar-
ization is dominant against a sagittal component for some anisotropic crystals in a
range of propagation directions on the free surface [59] and the SAW is almost shear-
horizontally (SH) polarized. It is observed that in an isolated range of.directions, called

T T ¥ 1 I 1 1 ¥ i ‘ 1 T 1 ) ‘ T L) 4 T

2934 :~ ~ ® X; (loading) direction —
- [ < < ¢ X2 (normal to loading) direction
£ ~
2 2932~ S e —
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[ e ~
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~
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Fig. 19.7. Variation of the leaky Rayleigh wave velocities of an aluminum 6061-T6 specimen in
the uniaxial tensile loading test. A dashed line is a linear curve-fit. (from Lee et al. [70D).
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Fig. 19.8. Comparison of SAW phase velocities on the (001) surface of a MgO crystal in the natural
and compressed (o) = - 100 MPa) states (from Chai and Wu [74]).

the pseudo-branch on some anisotropic surfaces, pseudo-SAWs propagate whose prop-
agation vector tilts down from the surface in the sagittal plane and which carry energy
away from the surface into the interior [59,72]. The velocities of the pseudo-SAWs
lie between those of slow and fast transverse bulk modes. One notable example is a
copper cubic crystal, the (001) and (111) surfaces of which have the pseudo-branch.
The nearly SH-polarized SAWs are unobservable by the fluid-coupled surface SAM,
but the pseudo-SAWSs can easily be detected by the SAM [73]. Figure 19.8 shows Chai
and Wu's measurements [74] of the SAW phase velocities along 0°, 10°, 20°, 80°,
and 90° directions from the [100] axis on the prestressed (001) surface of a MgO
crystal by the line-focus SAM. The MgO crystal was compressed at 100 MPa along
the [100] direction. The measured SAW velocities are in good agreement with those
calculated from the integral formalism of Barnett et al. [63, 64]. Note that the SAW
velocities increase near the [100] axis and decrease near the [010] axis. Between 30°
and 60 ° directions from the [100] axis, which straddle the [110] direction at 45°, the
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SAWs in the MgO crystal are nearly SH-polarized and cannot be detected by the fluid-
coupled SAM. In this angular range of SH-polarized SAWSs, which almost coincides
with the pseudo-branch, Kim and Achenbach [73] instead measured the phase velocities
of sagittally polarized pseudo-SAWs by the line-focus SAM, using the (001)-oriented
stress-free Si and MgO crystals. For crystals exhibiting a substantial anisotropy, prop-
agation and polarization behaviors are expected to be dominated by the anisotropy of
the SOEC, and the acoustoelastic effect on them is of the order of the initial strain.

19.7. CONCLUSIONS

The strength of a solid under stress is characterized by the effective elastic coefficients
K, which in general vary nonlinearly with stress. The K coefficients lack the full
symmetry found in the thermodynamic elastic coefficients Ciju. Kt = K jin, Kiju =
Kijix, but Ky # Kuij. Ky and Ky;; are related by Huang’s conditions as specified
in Egs. 19.20 and 19.33. The wave propagation coefficients C‘fjk, defined in Eq. 19.31
satisfy the same symmetry relations found in the K coefficients, including the same
Huang's conditions. Both [Kp] and [Cog] (@, B = 1,2, ...6) matrices have in general
26 independent elements. The isothermal Kzﬁ coefficients are obtained in quasi-static
tension, compression, and torsion tests. The adiabatic Kﬁﬁ coefficients are linearly

related to the C‘iﬂ coefficients, and they can be determined from measurements of
the phase velocities of sound waves propagating along various directions in a stressed
solid medium. Huang’s conditions applied to two transverse sound waves propagating
in the principal directions of an orthotropic medium lead to the acoustic birefringence
phenomena expressed by Eq. 19.46. These birefringence formulas can be applied to
characterize residual stresses locked in structures.

The Kju coefficients are valuable for studying the strength of solids, phase transi-
tions, equations of state of solids, etc., at high pressures. K coefficients in the initial
state can be written in terms of the SOEC, TOEC, and initial strain via Egs. 19.21,
19.15, and 19.17. The K coefficients can be used to extract information on the TOEC
and HOEC, which are useful for the investigation of anharmonic properties of solids.

A SAW propagating on the traction-free surface of an initially stressed semi-infinite
solid modifies the shape of the surface. This results in the peculiar surface boundary
conditions specified by Eq. 19.65. For a SAW propagating in the principal stress direc-
tion of an orthotropic medium, one obtains an analytical expression, such as Eq. 19.68,
which relates the SAW phase velocity to the principal stress in the propagation direc-
tion and the thermodynamic elastic coefficients. For a SAW propagating in a general
direction on the surface of a stressed orthotropic medium, which is isotropic in the
natural state, acoustoelastic formulas similar to the case of bulk waves are found.
These are given by Eqgs. 19.74—19.77. A notable feature in these equations is that they
are independent of the shear stress or shear strain on the surface. These acoustoelastic
formulas can be used to determine biaxial surface stresses.
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