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Thermodynamics at finite deformation of an anisotropic elastic solid
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This article presents various thermodynamic relations of anisotropic elastic solids subjected to finite defor-
mation caused by arbitrary stresses. They include the conversion relations between the adiabatic and isothermal
values for the effective elastic stiffness coefficients, effective elastic compliance coefficients, effective Young's
modulus, and Poisson’s ratio. Also expressed are the relations between the thermal-expansion coefficients at
constan{Cauchy stress and at constant thermodynafsiecond Piola-Kirchhojfstress and those between the
specific heats at constant strain, at constant thermodynamic stress and at constant stress. Particular emphasis is
given to the deformation of a specimen of orthotropic symmetry where the thermodynamic relations are
expressed in a simple form readily applicable to engineering proble30463-182606)08933-3

[. INTRODUCTION and one may seek to understand the relations between them.
A thermodynamic stress; , which is usually referred to
Thermodynamics of infinitesimal deformation under ther-as second Piola-Kirchhoff stress in engineering literature, is
modynamic equilibrium for an isotropic elastic solid hasas important a variable as an ordinary Cauchy stigss
been extensively described in literature including many textwhich is defined as a force divided by an area, for description
books. Extension to anisotropic elastic solids including crys-of finite deformation processes. Conversion relations be-
tals was given by Voidt and described also elsewhére. tween the adiabatic and isothermal elastic moduli, and those
Some useful thermodynamic relations under hydrostatibetween the specific heats obtained at constant strain and at
pressures for anisotropic solids were given by Ove?ton-constantrij , are given in literaturé;’ which also treat ex-
Thurstort® and Wallac®” gave a detailed description on tensively thermodynamics of solids under hydrostatic pres-
thermodynamics of anisotropic elastic media subjected to fisyres. One may still ask what are the relations for the
nite deformation with particular emphasis on solids undefhermal-expansion coefficients and the specific heats, which
hydrostatic pressures. They gave good theoretical accounige, respectively, measured at constant thermodynamic stress
for most of experimental data obtained to investigate highers. and at constant stress; for a specimen subjected to
order elastic constants, anharmonic properties, and equatiofite deformation under arbitrary stresses. We also derive
of state of solids, etc. However, to the author's knowledgethe formulas for the effective Young's modulus and Pois-
useful thermOdynamiC relations for aniSOtrOpiC solids Sub'son’s ratios for the specimen, which are Signiﬁcant to engi_
jected to finite deformation under arbitrary stresses are Wanheering app]ica’[ionS, and the conversion relations between
ing, which may account for subtle differences in physicaltheir adiabatic and isothermal values. In this paper we will
quantities measured under various thermodynamic condiddress these questions in the following sections. These re-
tions. lations are very complicated for lower symmetry materials
For example, in an attempt to estimate residual stresseinder arbitrary stresses. Particular emphasis is given to
engineers sometimes use acoustoelastic birefringence formgrthotropic or higher symmetry of homogeneous deforma-
las where texture and birefringence constants are measurggn, where the relations are reduced to a simplified form and
in a tension/compression test and they combine ultrasonistil| useful to many engineering applications.
adiabatic data with isothermal static tension/compression
data(see Pao, Sachse, and Fukudbkdhe effective elastic
stiﬁness/com_pliance coefficients obtained under fini_te defor- Il DESCRIPTION OF DEFORMATION STATE
mation lack in general symmetry relations found in those AND SYMBOLS
under infinitesimal deformation and these effective coeffi-
cients can be measured either isothermally by a static load Consider a stress-free specimen, which is called to be in a
test or adiabatically by dynamic wave propagation measurenatural state. The Cartesian coordinates of the particle in a
ments. One may naturally ask how these quantities obtaineglatural state is denoted by vectar Under an arbitrarily
under different thermodynamic conditions are related to eachcting stress the specimen undergoes a finite elastic deforma-
other. tion U from the natural state. We call this state an initial
Another example is a specimen under ultrahigh pressurstate, the Cartesian coordinates of which is denote by
obtained inside diamond and carbide anvils, where a pressuiéhe initial state can be any state, which can include a natural
exceeding well above 100 GRa Mbar) is achievablgsee  state, sincdJ is arbitrary. Finally a small deformation is
Ruoff, Xia, and Xid) and may not be exactly hydrostatic. It superposed on the initial state. We call this state a current or
may be better described as a triaxial compressive state g@iresent state and denote its Cartesian coordinates idye
three principal stresses. Under such conditions various thedenote the density of the natural, initial, and current states by
modynamic properties of the specimen would be changeg., px, andp,, respectively, and the stress at the correspond-
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ing states by;;(a), 0j;(X), andaj; (x), respectively. The de-

¢ i ) e J—Jxx—de+ d(X1,X2,X3) | _ px
ormationu is expressed as =J"=det————~—~|=—,
P d(X1,X2,X3)|  px
u=x—X. 1)
_ ] o “a d(X1,X2,X3) | Pa
The strain matrices referred to the natural and initial states J*¥=de Hap.ap.85)| oy’ 12
are given by 1,92,83 X
1 For most cases in this article, a coordinate system chosen is

IXm IXmn 5__) @) with reference to the initial state. Hence, when the thermo-
day da; V)’ dynamic stress and Jacobian are written without superscript,
as shown in Egs.10) and(12), it is understood that they are
Ui du; - Uy Juy referring to the initial state unless otherwise specified.
e e Bruggef! defined the adiabatic and isothermal elastic

77ij:§

§ij:§ =5\

1 (ﬁxm X ) 1

X X, 0172 ax Tk T ax ax, | ef , ot
stiffness coefficiente and compliance coefficients of the
1 duy duy nth order forn=2 with reference to the natural state as
=&t 5 0% 7. )
2 9X; X s ]
Cijki...= Pa(d"Uld ;).
_ 1 O')Ui &U] —(1
173 | ax, *ax, | T (WMt @ Ol = pal " 13 a ),
whereu; ;= du;/3X; is a displacement gradient. Sﬁm---: —pa(a“H/aTﬂ&7§|- e,

A thermodynamic stressi)} also called the second Piola-
Kirchhoff stress, with reference to the initial state, is defined

as S;Ek|=—pa((9nG/(9Tla}(97'§|)T (13)
JU JF With reference to the initial state we define the adiabatic and
TiXZPx(—) = Px(_) , (5)  isothermal thermodynamic elastic stiffnes€@saind compli-
) 9&ij ) o 9&ij ) ; ancessS of the second order as
whereU andF are, respectively, the internal energy and the Cﬁkl =Px((92U/f9§ijﬁ§k|)s=((9Tij 19Ea)s,

Helmholtz's free energy of the current state per unit mass,
denotes the entropy, an@l the temperature. The energy

T _ 2 —

equations of the current state for nondissipative thermoelas- Ciiia = px(0°F19i;06) 1= (973 [ €)1

tic media usingU, F, the enthalpyH, and the Gibb’s free 5

energyG per unit mass are expressed as St = — px(PHI9797q)s= (0&i; 1 I7)s
dU=T dS+(1py) 7,d&; , (6) Shk = —px(9°GlaTjamq) 1= (& ldTa)r. (19
dF=—S dT+(1p )T_ng__ (7) Since the initial state is arbitrary, we are interested in evalu-

XTSI ating various thermodynamic quantities at the initial state.
dH=T dS— (Lpy) &;d7% ®) For this purpos@ is hence restricted to a small displacement
ije i

and therefore the straig; from the initial state becomes an
_ - infinitesimal straine;; . We also define the effective elastic

dG=-SdT (1/pX)§”dTi)J§' ©) stiffnessedM andK and the effective elastic complian€g

In the special case that the initial state represents the stresghich all indicate the measure of situ material strength, as

free natural state, which is chosen as the reference configisee Thurstot?)

ration, the thermodynamic potentials are expressed by re- Sor T

placing py, &;, and 7} in Egs.(6)—(9) by p,, 7;, and 73, ikl =(daijldug))s or T;x

respectively. Equatiob) indicates that the thermodynamic _ RS or Ty

stress depends on the choice of a coordinate system. For =Ci (X)=03j(X) dia + 0 (X) G+ 1 (X) ik,

example,rf} is related torg,;, the thermodynamic stress with (15

reference to the natural state, by

b 1= (901 1981)s o Tx= (LM T+MP T

Px &Xl z?X
=S =2 70 70 e (10 _Sor T
W, day gay M =Cil  (X)=0j(X) 8 + (L[ o (X) 5
It was shown by Murnaghdhthat the stressr;;(x) at the + i1 (X) Sjk + ajk(X) 81 + 071 (X) Sl (16)
current state is related to the thermodynamic stresses by Sor
Qi ' =(d8ij130)s or T:x - 17
Px O’)Xi (9X] Px (9Xi (7XJ a
Oii=—— 7% w TKI= 75— > Tkl (1)) When the superscrig@ or T is omitted in the notations of the
1 px X X, Pa 98 98

elastic stiffnesses and compliances defined in B®—(17),
Using the Jacobians, the density ratios above can be writteit is hence understood that they refer to both adiabatic and
as isothermal processes.
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Since the strains and th@hermodynamig stresses are
symmetric, it is convenient to introduce the Voigt notatfon:
11~1, 22~2, 33~3, 23~4, 13~5, 12~6. By convention we
define

§ij=(12)(1+6)¢,, &ij=(12)(1+8)e,,

7ij=(12)(1+ 5j) n,, (18)

Thermal Pressure

(19

where the indices andj run from 1 to 3, and the index
runs from 1 to 6. With abbreviated Voigt notation, it is noted
that whilec,, ands,, in Eg. (13) andC,, andS,,, in Eq.
(14) are symmetric with respect to indicgsand v, K, in
Eq. (16) andQ,, in Eq. (17) are not symmetric, unless the
stress acting on the specimen is hydrostatic, ir§5sd;; ,
wheres is a positive or negative scalar variable. However,
they all satisfy the reciprocal relation
C;.LVSV)\: C,U,VSV}\: K,u,VQV}\: 5/1)\ .

We introduce other thermodynamic variables evaluated at
the initial state. The thermal pressur¢ésand ¢ at constant
strain ¢ are, respectively, defined as

(ﬁij:_(aTij/&T)g;x, ¢M:_(&TM/(9T)§JX’ (20)

== (90 19T ey, =— (90 1T v . 21 FIG. 1. Schematic diagram showing the relations between vari-
@i = =005 10T ex,  ¢,== (00,1 0Mgx. (2D ous thermodynamic variable@) The names of the properties and
The linear thermal-expansion coefficients at constant stresge variables(b) The corresponding symbols.
o, at constant hydrostatic pressyreand at constant thermo-

Tij=Tu andO'iJ':O"u,

dynamic stress, are expressed as relations developed with respect to the natural state, such as
Y . those found in the papers of Thurstérand Wallac€.” hold
aij=(0&ij 10T gix, @, =(9E,19T) g:x, valid, when the thermodynamic variable§, 7, , p,, a, C
o o (specific hegt and the second-order,, ands,,, in Eq. (13),
aij= (& 19T)px, @, =(9€,10T)px, which are aIIxreferred to the natural state, are, respectively,
replaced byrii, &, px, @, C, andC,, andS,, in Eq. (14),
aij=(0&i;10T) nx,  a,=(9&,19T) .x. (22 which are now all referred to the inftial state.

The specific heat per unit mass of the initial state evaluated (Ijt is anfFEddthat while the e;ffective elasti_(i coefficierhtsl
at constant stress, at constant hydrostatic pressype at ~and Q defined in Eqs(16) and (17) are easily measurable

constant thermodynamic stressat constant straig, and at ~ duantities, the thermodynamic elastic coefficieftsand S
constant(specifig volumeV, are, respectively, defined as appearing in Eq(lA) are d|ﬁ|cult_§o measure. The thermal-
expansion coefficient and specific heat can be measured at

C,=T(d9/dT),, Cp=T(dSIIT)y=(dH/IT),, constant stress and are difficult to measure at other constant
thermodynamic quantities. It is mentioned that at the natural
C,=T(9SdT),=(aHIIT),, state the distinctions betwe&h K, and the second-order,
betweenS, Q, and the second-ordes, between¢ and ¢,
Ce=T(dS/dT)=(U/aT), betweena” and o”, and betweerC,, andC ., vanish.
Cy=T(ISdT)y=(U/dT)y. 23 lIl. THERMAL-EXPANSION COEFFICIENT

Finally, we introduce the dimensionless thermodynamic A. Relation betweena” and a”

Gruneisen parametey defined at the initial state as Thermal-expansion coefficient can be evaluated either at

1/ aT 14T constant stress or at constant thermodynamic stress. To find
Yi=TT ((9—) D YT T (a_) (24)  the difference, we také; and 7, as dependent variables and
§ii) sx €l sx o;s andT as independent variables by considering the form

§ij=&ij[ r(oys,T),T], the derivative of which with respect

toTis
déij &\ 9T
7 *(a—)(a—T) 29

The relations between stra#) the stresses and 7, the
entropyS, and the temperaturke are schematically shown in
Figs. X@ and Xb), which are similar to Figs(10.2g and
(10.2b in the book of Ny€? Useful mathematical methods in (ﬁ) —
thermodynamics are described in the book of Margenau and ar ]
Murphy*® It is worth mentioning that because the initial
state can represent the natural state, various thermodynanfior simplicity of notation we introduce
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Xij= % 19X;, Ui ;=auildX;, only three nonzero elastic compliandes stiffnesses Equa-
’ tion (33) for a cubic symmetry yields
X,"JZ(&Xi’j/0T)0=((3’ui’j/o7T),,=ufj’ , (26) aP =

=a],—paP(S};+2S])=a],—paP/(C},+2C],

,u
where the prime denotes the differentiation with respect to o T T
temperature and superscripindicates an evaluation at con- a’=al[1+p/(Cyy+2Cy)]. (34)
stant stress. Considering the; as theijth element of the

. - - .
matrix (x; ), its inverse element is found to be The difference between’ and a” can be expressed in

terms of the effective elastic compliance defined in &1).
ax; 9X, writing &= &j[ oy (7, T),T] and proceeding in a similar
axl = =5, X]f’klzaxj 9%, (27) ~ way as above, one obtains at the initial state

k

(001 19T) 7= — BT+ 0rs(UL 1 815+ Ul 5Skr),  (35)

3

o

L[ XX
T | V9 ax, axg

X IX| ( (93)

S| 9%, oxs | oT afi=af+ Q[ = B7ow+ ors(Up  Sis T U 5k ]. (36)

For a specimen of orthotropic or higher symmetry loaded in
(28)  the principal-axis direction, E¢36) reduces to

axk aX|
aT axr ﬁxs

Substituting the volumetric thermal-expansion coefficient i~ Qi BT~ 2a),  ]=11.2233; k=123,

B7=(4J1JT),/J at constant stress and using the notations in - T . T T . .
Egs.(26) and(27), Eq. (28) is expressed as a,=a,=Q,101(f"—2a1)—Q,,0:(B"—2a3)

—Qj303(B7—2a3), p=123. (37)

(7 /&T)o:\lars[ﬁgxlz,rlxl s (Xk pxp qu rXI s

In a special case that the stress acting on the orthotropic

+x|_,p1Xg,ch;§Xk_,rl)]- (29 specimen is hydrostatic, i.en,s=—pd;s, EQ. (37) yields
At the initial stateJ=1 andx; ;=X =5ij, and therefore =P DlOT (B —2aT)+ O o B7— 20l
Eq. (28) becomes at the |n|t|al state p=autPlQu (B 1D 1+Qua(B 2)
+Qua(B—2a3)], u=123 (39

(0701 T) =B 01— Trs(Uf st UfsB). (30) I
=B (1-p/B")+ 2P Qjiu ki » (39)

where the use of the isothermal compressibility
x"'=1B"=Q/,, is made for derivation of Eq39). Further,
it is readily shown from Eqs(32), (37), and (38) that for

cubic symmetry
We restrict ourselves to an orthotropic or higher symme-

try where a loading direction coincides with the direction of g o S KT
_ _ hikk _ "riikk
the principal axes. Theng,s=0,6,s and uk r=Up réikr P P

P 4P T C
= ag) (k not summed Using the Voigt's notation forr and o Qe i
S, Eq. (31) reduces to

The evaluation of Eq(25) at the initial state yields

aﬁ:aiTj+S1ik|[ﬁlr0kl_Urs(u(kr,réls_i_ul sOkr)]- (3D

= BTSnkk , (40)

al=aP+pa’(Q]+2Q1) = +pa’l (K] + 2K,

afi = afj + Sy BT 2ay,), 1j=11,22,33; k=1,23,

aP=a"(1—p/3B"), (41)
al=a’+ S} 0y(B7—2a]) +Sh,05(B7— 2a3 whereBT= (K |,+ 2K [,)/3 is known as the isothermal bulk
modulus of a cubic specimen at an arbitrary hydrostatic pres-

+S303(8°—2a3), n=123, (320 sure level.

where 87=af+aj+af.

: . . B. Dependence of thermal-expansion coefficient on stress
In a special case where the stress acting on an orthotropic

specimen is hydrostatic, i.ar,s= —p3&;s, Eq. (32) becomes The dependence of the thermal-expansion coefficient on
stress is significant and its behavior may even exhibit a small

a2= T p[S 1(Bp_2a1)+ST2(Bp_2a ) degree of nonlinearity _Wlth stress fo_r some mgte_rlals. I_-|0W-

ever, we assume that its variation with stress is linear in the

+ S,TLs(BP— 2a8)], =123, (33)  range of the stresses below an elastic limit, which falls below

1 GPa for most engineering materials. The stress derivative
where the superscrigt means an evaluation at constant hy-at the initial stress is the same as that at the natural state
drostatic pressure. For a specimen of cubic symmetry undewvhere the distinction between the thermodynamic stress and
hydrostatic pressuresy;=a,=a3=a, =3, and there are real stress vanish. In the following Eqg2)—(44), X anda
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mean evaluation at the initial and natural states, respectively. 1/ 4T 1 (o &bij Cﬁm af,
The thermal-expansion coefficient at the initial state can bey;;=— T (E) =7 (E) = . ,C
approximated by ilsx  PX x Pxbe Px i47)
oo T oot g which yields the thermal-expansion coefficients at constant
Ik T;a '
It is easy to show that o =pxCeSik vk, B =afi=pxC:Sigra- (48
" " For orthotropic or higher symmetryy;; = v;; &;=v; (i not
dajj |\ [daij) | d [dejj summed;i =1,2,3. For cubic and isotropic materials under
dog|  \dow| ooy | aT arbitrary hydrostatic pressures=1y;,=7y,,=7vs3 and it is
X Ta o=0"7 easy to show from Eqg40), (47), and(48) that
d [ de;; QiT“ T Q] \-1 pRT PRT PRS
=573 ! :# . (43 :ﬂciikk:B(Snkk) _B'B_ BB BB
7k T e=0 a=0 9chg chg chg pxCv PxCp'

Using the temperature variations Qﬁk, data tabulated
by Simmons and Warl§ at the natural state,
[(La”)(da’ldo,)]t.a (0=1,2,3 is calculated to be 0.43/

GPa and 0.36/GPa for aluminum and copper, respectively.

It can be readily shown from E¢32) or (37) that for the

orthotropic specimen loaded along the principal-axis direc

tion

IQp,
aT

) ~[Q}.(B7=2a))],—0
o=0

Iy T;a

(v not summedi,r=1,2,3), (44

where the use 08"=B” and a"=«” is made at the natural
state. The values d®;; and its temperature variations are
tabulated by Simmons and Wafgnd Hearmor?

IV. THERMAL PRESSURE
AND GRUNEISEN PARAMETER

The thermal pressures and ¢ defined by Eqs(20) and
(21) are equal to each other, since

(90'”') (O')O'”) ((97'“)
oi=—|— = — -
. IT | 9T ) IT oy
Xi’ka’|> (t?TH) ﬂTij)
=— —| =—|\==] =¢j. 4H
( J X T &X a7 &X

The use of the Maxwell’s relations and the definitions of Eq.

(14) yields
é ((9TM) ( aS)
=Pu= | 7 =Px\ 57
BoTH oT £X ¢, _
as) (an> -
=px| — — =a,C, ,,
px(&T)\ T;X &g,u, T;X A )\M
ay= (,DMS;)\ . (46)

Using the Maxwell’s relation and E@46), the thermody-
namic Grineisen parametey; defined in Eq.(24) is ex-
pressed as

(49

where C,=C,, [refer to Eq.(60)] and B¥B'=C,/C, are
utilized. The last two parts of Eq49) are familiar relations

in the field of equation of state of solids.is shown to be
approximately independent of temperature except at low
temperatures for many cubic solisee Wallac8.

V. SPECIFIC HEAT

The difference between the specific heats at constant ther-
modynamic stres<, and constant strailC; is given by
many authors®*~"and the difference between the specific
heats at constant hydrostatic pressQpeand at constant vol-
ume Cy has been treated in literatute’. C, is related toC,

by
C,=C;+TajaC,

Mmoo ﬂy/pX=C§+Ta:¢V/pX’

(50

where subscript indiceg and v are the abbreviated Voigt

notations andg,=«,C ,, is the thermal pressure given in

Eq. (46). The ratioC,=C,/C, is given by

T _TA~S T ~S
=CT=1+ TaMaVCW _ aMC¢V (5
r T '
Cg pXCT aMC/.LV

To find the relation betwee€_ andC,, we chooseu,,
andT as independent variables aSdand 7, as dependent
variables by considering the forns=9[7(os,T),T],
which on differentiation with respect ® yields

IS\ (S N as)

ot ~\aw Tlanal,
Multiplying Eqg. (52) by T, and using Eqs(23) and(30) and
the Maxwell’s relation

(97'k|

CY

(0817 1= (&1 1IT) .1 px= gl px (53

one obtains at the initial state
Co=C,+(Tay/px)[B7on—0rs(Ug  ds+ ulg,sékr)]-( )
54

For an orthotropic specimen loaded along the principal axis,
ag=apd ando,s= 0o, 6,5, and therefore

C,=C.+Tafoy(B7—2a})lpx. (55
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Equation (55), for the case of hydrostatic pressure VI. EFFECTIVE ELASTIC STIFFNESS/COMPLIANCE
o= —pd,s, becomes COEFFICIENTS

T Equationq32), (46)—(48), and(50) are expressed in terms
Cp=C.—Tp(B"B"—2axaf)/ px. (56)  of the thermodynamic elastic coefficiersor C, which are
S ) ) ) ) difficult to measure but can be evaluated by using the rela-
which in the case of cubic and isotropic symmetries reducegons petween the thermodynamic elastic coefficients and the
to effective elastic coefficient® ,, andK ,,, which can be eas-
ily measured. In this section we derive these relations. We
C,=C,—3Tpa’aflpy. (67)  also discuss the conversion relationships between the adia-

batic and isothermal effective elastic coefficierttsi,, and
From the books of thermodynami¢see also Refs. 1, 2, and QT - KS and K;Tw K S, can be obtained from the wave

4-7, C,—Cy is given by splged measurements of ultrasonic waves propagating in vari-
ous directions of an elastic mediuQ.fw is then obtained by
Cp—Cy=T(B")?B/px. (58)  inverting theK 3, matrix.
The differences betweed}; andC |, and betweers?,
From Eqgs.(50), (56), (58), and(39), one can derive andS, are expressed &&’
Tal T T r~T AT
CV_ szT[a#aVC;V_(Bp)ZBT‘F p(2akaﬁ—,8 ﬂp)]/px CS _ CT + Td’ad’ﬁ _CT + TC(MCYVCM&CVB 62
aB” “ap C — “~ap p C ’ ( )
=(Tlpx)laja;C,,~BTBPA P X
+2BTQ! . al (af —aT)p]. (59 Tala)
iijj “kk\ ®kk ji S —gf _ LV (63)

For materials of orthotropic or higher symmetry, there are
three or less Gmeisen parameterg; and the substitution of

Eq. (48) into Eq. (59) yields To find the differenc& 7, we consideg,, andS

v

as independent variables ang, and T as dependent vari-
T T T b ables:
(Cy—Cy/C=B T[Quuneii ¥ii — Siikk®jj Ykk
+2Qf; afl @i )P/ (pxCo)]. dsmn:(%) dgkﬁ_(%) dT,
(90'k| JoT
(60) 7
Neither Eq.(59) nor (60) vanishes in general. However, re- aS aS
calling Egs.(40) and(49), it is readily shown that both Egs. dS= Jou " doy+ T dT. (64

(59) and(60) vanish for cubic and isotropic materials. At the
natural state(p=0) for which Qiji :Sﬁkl =Sk, Eqg. (60)  ynder adiabatic conditiodS=0, Eq.(64) can be written as
becomes identical with EQA1.11) derived for materials of
orthorhombic or higher symmetry by Barron and Mufin,
who showed that Eq60) is less than 1% for many noncubic q¢ . =
solids at zero pressure.

Variations of the specific heat with stress or strain are
extremely small as evident in the experiments of Loriers-which on division by (loy)s yields at the initial state
Susse, Bastide, and “Blestran'’ and Bastide and

(9emnl IT) (S dary) 1
(09/9T),

d€mn

&O'H

(doy)s— doy)s,

T

Loriers-Sussé® Its dependence on stress can be considered S . Tag, [ S
as linear and written as Qunk=Qmnk~ —=— | 77—
CU (90'k| T
aC T [daf Tam, [ S\ [ dsij
C,=C. (a)+ —”) gii=Cy a)+— —J) oii . =Q = — | — )
o o aa’ij Ta ij o Pa oT va ij mnkl C(r 078”- N dok N
(61) .
. - =Ql —— 47 Cl o QF (65)
The specific heat at the natural state and variations of the mnkl— 5 C,, - rsrsiiikl
thermal-expansion coefficient with temperature are found in
the data complied by Touloukiar. where the Maxwell’s relation

Note that comparison of E¢50) with Eq. (55) indicates
that the difference betvyeaDT andC; is _generally an order px(9S de)).x= px(ISIE ) 1ix=— (973 19T) p.x= by
of a few percents of either value, while the difference be-
tweenC_, andC, is much smaller in the stress range below = arTsCrTsij (66)
the elastic limit, which is generally an order of a few per-
cents of the thermodynamic stiffness coefficie@tﬁy. The is wused for derivation. Using Eg. (16) and
differenceC,—C, may be safely ignored in most cases. K Qjjxi = (9« s+ 1 65)/2, EQ.(65) is written as



Ta?
S _ AT mn T T
Qmnk= Qmnki—™ —PxC [y + arsorsQii — @/s(QiskiTri
g

T T T
+ Qsjki07j + Qirki 0sit Qrjii 7)) /2]

(67)

For an orthotropic specimen loaded along the principal- To find the difference betweel Cs,ﬁ

axis direction, a/s=a/d,s and oj;=
(67) is simplified to

g6, therefore Eq.

Ta?
Qunk= Qi — _Cmn [+ 7o (Qf —2Q1 )],
Px‘“o (68)

which is expressed with the abbreviated Voigt's notation as

S

pv—

T

mv

el 1+
Q P)(Cg ( r[)y

Q (69)

where
re=(aj/al)oy(Q),+Q1,— Q1)+ (adal)oy(Ql,+Q1,

—QJ,)+(ailal)as(QL,+Q7,— QL) (70)

In Eqg. (69 no summation over the Voigt's index is im-
plied. a,,=a;=0 for u or v=4, 5, or 6, and therefore

Q§4: QL- Q§5= Qg51 Q§6= Qge- (71)
Noting thatQ,,=Q,,, and using Eq(38) for an orthotropic

specimen under hydrostatic pressug=—pJ;;, one finds
from Eq. (69) that
TaPaP
S _of __# 7
Qr=Qu ", c, (72

which is a familiar result in the field of high-pressure equa-
tions of state.

The compressibilityyS o T

of a material can be ex-
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=Q,.101(B"—2a])+Q},05(B7—2a3) + Q,303(B”
—2a3), (74

where the Voigt indexu=1,2,3.

andK 5, we con-
sider a small deformation from the initial state, in whi
becomes an infinitesimal strais;. We consider the form
o,=0,le,T(e4,5) ], wheres; andS are chosen as indepen-
dent variables, andr, and T are the dependent variables.

Partial differentiation with respect te; yields

[l 55 15 (5,

Using the Maxwell's relation {T/dez)s=(d74/3S),/px
=—T¢4/(pxC,) and evaluating at the initial state with the
aid of Egs.(45 and (46), one obtains from Eqg75) and
(62)

do, do,, do,

aT

JT
de

(75

(983 &83

B Ta;aZCleCIB

pxC¢

T
ap

aB”
(76)

which can be also derived from Eq46) and(62). Note that
Eq. (76) can be derived in a similar way by starting with the
form Uazoa[eﬁ,S(eﬂ,T)].

For an orthotropic specimen loaded along the principal-
axis direction,afj=a/g; (i,j=1,2,3, and therefore it fol-
lows from Eq.(76) that

K§4_ KL: 024_ 014: 0, Kgs_ Kgsz C§5— C-':IE—SZ 0,
Kg6—Kgs=Cgs— Co6=0. (77)

For a material of cubic symmetry subjected to hydrostatic
pressuresr,.= —pd,s, it is easy to show from Ed76) that

pressed in terms of the effective compliance coefficients

QS " as(see Refs. 1, 2, and 437
Y
SorT_ _ASorT_~SorT SorT
X = —<_) =Qik =Q7 +Q2;
V(9p Sor T;X

+Q§30r T+2(Qf20r T+Q§30r T+Q§30r T)’ (73)

where V=1/p, is the specific volume and the symmetry
property ofQ,,=Q,, under hydrostatic pressures is uti-
lized. Then the bulk modulugS ° T of a material is ob-
tained simply by taking the reciprocal gf ° 7. The differ-
ence between the adiabatic and
compressibility or bulk modulus can be calculated via Egs
(72) and (793).

The relation betweerkS' ™ and C3 2" T has already
been described by Ed16). The general relation between
Q%5 "andS " T is difficult to obtain. Three relations be-
tweenQ,, and S}, can be found from Eqg32) and (37)

isothermal values dfloreover,

[(CL+ 2C12) a’l T
pxCv

S T _ S T _ _ S T
Kll_ Kll_ Cll_ Cll_ _C12_ C12

=K$,—K1,, (78)
where Cy, is equal toC; for cubic and isotropic materials
[refer to Egs.(59) and (60)]. In addition toK,,, we define
the effective shear modulus,, of a cubic material as

K3 = (12 (KK =(1/2)(K[;— K1) =K} . (79

Q1:=Q2=Q33  Q127Q23=Qy3  and
(Q11+2Q;y) “*=Ky;+ 2K, for cubic symmetry. The adia-

batic and isothermal bulk modulB® and BT, are via Egs.
(73) and (79) given by

BS=—V(ap/dV)s= (113 (K3 + 2K3,) =K — 4K§/3,
(80)

for an orthotropic specimen loaded along the principal-axis

direction. They are expressed as

SL101(B7—209) +S,0:(B—2a3)+ S| 5038~ 2a3)

BT=—V(dp/aV)r=(1/3)(K],+2K],)=K],—4K],/3

=(1/3)(C],+2Cl+p). (81)
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The last part of Eq(81) can be obtained by applying Eq. posed along the principaX; direction. The stresses at the
(16) for the case of hydrostatic pressure. It follows from Egs.initial state are given byr;;=o0;6; and a small additional

(78)—(81) that deformation is described vy = So33 andu; ;=& 6;; . Rep-
resenting the specimen gauge lengths along the principal di-
S N [(c11+2(:12)a7]2T rections byl,, I,, andl;, we derive the formulas for the
BS-BT=KJ—Kj,= C , (82)  Young's modulusE; and the Poisson’s ratiog;; and v,
Pxov which are defined as
which, on substitution of Eq41) and the last part of Eq.
(81), becomes dos d(503)
S_ BT o(BT P =\ des) | dlalls (69
B°>—B'=9(B'aP)°T/(pxCy). (83 3/x 31713 Ix
The above result has been treated in many books of thermo-
dynamics.
_ €1 . dlllll . €9 . dlz/lz
VIl. EFFECTIVE YOUNG'S MODULUS V13= €3 x_ dls/l; x’ V3= €3 x_ dia/l; x.

AND POISSON'S RATIO

. . . . 85
In this section we restrict ourselves to a specimen of (85)

orthotropic or higher symmetry, which is homogeneously
loaded along the principal-axis directions at the initial state In this caseK,, in Eq. (16) can be expressed in matrix
and then a small additional homogeneous loading is supeferm as

r Cll+ (o] C12_ (o] C13_ (o] 0 0 0 7
C12_ [0) C22+ (0] 023_ (0] 0 0 0
. C13_ g3 C23_ g3 C33+ g3 0 0 0
[Kul=] o 0 0 CutCloptas)2 0 0 (86)
0 0 0 0 Cos+ (0 + 073)12 0
L 0 O O O 0 C66+(0'1+0'2)/2_

A small deformation process from the initial state can be either isothermal or isentropic. Usi(@9E&qs.(84) and(85)
can be written as

ros. Q"% (K™ ® (CL™ *=01)(C3” *+02)—(Ci,” °~01)(C3” *~ o) -
V 1
13 13'30r ST (K 1)T or s (CT or S+ 0'1)(CT or S+ 0_2)_(01'20r S_ Ul)(CT or S__ 0_2)

rors_ gsor S (K l)T or S (CT or S__ 0'2)(CT or S+ 0_1)_(C-:|l—20r S_ O'z)(CT or S__ 0_1) (88)
14 = 3
23 13'30r S (K 1)13'30r ST (CT or S+ Ul)(CT or S+ 0_2)_(C'{20r S_ 0'1)(CT or S__ 0_2)

ET or S__ 1 1 CT or S 0_3 T or S(CT or S__ 0_3)_ V'gsor S(CT or S__ 0_3), (89)

T S 1\ T S
330I’ (K ) or
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where K ~! denotes the inverse matrix of the matfix ) QS vigtad\E]

and the superscripts and S represent isothermal and adia- v§3= TS 1w’ rET" (99

batic values, respectively. One recalls that in E§3)—(89) Q33 ~azhEs

oy, 0y, and o5 are the principal initial stresses. Equations

(87)—(89) expresses the effective Young's modulus and

Poisson’s ratio in terms of the thermodynamic elastic coeffi-

cients and three principal stresses acting on an orthotropic

specimen. T s T s
The difference between the adiabatic and isothermal val],= — Qf‘_ % Vig=— Qza_ w

ues of the Young’'s modulus and Poisson’s ratios can be Qaz  1+azhEjs Qa3 1+“3)‘E3

conveniently obtained from E¢69), which can be written as (99

The termsa?\E} (i=1,2,3 in the above equation is much
smaller than unity. For example, they are estimated to be

(1+r) (90) 0.0047 for aluminum, 0.0031 for copper, 0.0037 for low car-
bon steel, and 0.0016 for 18-Ni maraging steel. It is therefore
sufficiently accurate to express E§4) as

o _ T

a3a3
Q= Q3 1+ —s—~
e RGN

where

S T T T
Vig= v13+(a1 + V13a3))\E3+ ag(ai+ v13ag)()\E3)2,

re=(ay/a3)o1(Qls+ Qlz— Qi) + (@l al) oo Qi+ Qls
—QJ9) +03(Qis+ Q23— Qly). (91)

V§3= V;3+(a‘27+ V;3a ))\E3+ ag(ag+ V;3C¥g)()\E-3r)2.

At uniaxial compressive loading of 1 GPa in thedirection, (96)
r. in Eqg. (91) is estimated to be 0.0059 for high-strength
steel, 0.014 for high-strength titanium alloy, 0.013 for cubic
iron and 0.012 for cubic silicon. At uniaxial compressive For an isotropic elastic solid subjected to an infinitesimal
stresso;=100 MPa,r, is estimated to be 0.045 for PMMA deformation at the natural state, Eq82), (94), and (95)
(lucite) and 0.032 for cubic NaCl. Here, the word cubic ap- become |dent|cal with Eq6.8) in the book of Landau and
plies only to the natural state. Lifshitz.2°

Taking the reciprocal of the above equation gives the fol-
lowing isothermal and adiabatic conversion relation for the

Young’s modulus: VIIl. DISCUSSION

The effective isothermal elastic coefficietits,, andQ ,,
of a specimen can be conveniently obtained in slow isother-
E3 E3 | uniaxial tensior{or compressionand torsion tests per-
T 3 3 mal uniaxia p p
E3:1+ (a§a%EST/pyC,) (1+rt) 1+ ad\ES’ formed in various directions of the specimen. What are usu-
ally measured in these tests are the applied force or torque
and linear or angular displacements. Since the calculation of
. K, andQ,, involves the differentiation of stress with re-
ES— Es (92) spect to strain, which again involves the differentiation of
3 1—ag)\E§’ displacement with respect to gauge dimension, an accurate
determination oK ,Tw andQlTw requires very accurate mea-
where\ denotes surements of the applied stress and dimensional changes.
Better accuracy in determlnat|on &f andQ are often
obtained first by measurlrigw andQ and next by using
Tal the adiabatic and isothermal conversmn formulas treated in
az(1+ry)
A (93)  Secs. Vland VII.
pxCo The effective adiabatic elastic stiffness coefficients are
conveniently obtained from measurements of ultrasonic
Similarly we proceed to obtain wave speeds in various directions of a specimeee
Schreiber, Anderson, and Séga A transit time of an ultra-
sonic wave through the specimen can be accurately measured
by using various techniques. Denoting the phase velocity of
an elastic wave propagating along thedirection and polar-
. Qfg —QI3+)\ai' V13+ angg ized along thex; direction byV;;, the pure—index_ effective
V3= — —s = =T = —, elastic coefﬁmentK . (unot summeglare determined from
Q33 Qai(l1-NazE3) 1-a3hEs the following equations:

I
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Kfl ng K§5 so is the specific heat at constant strain. For these reasons
1 [(V24V2)]=| KS KS, KS 97) both of them are usually measured at constant siwgser
2 PV Vi g ta2z A constant hydrostatic pressyseThe measurement of the spe-

S S S
Kss K Kz cific heat or thermal-expansion coefficients at constant stress
ajj requires us to monitor the dimensional changes in three

which indicates that the diagonal elements of the adiabati®rincipal directions of a specimen and adjust an applied force
effective elastic stiffness matrix can be obtained from then order to keepy;; constant, as in the case of an engineering
wave speeds along the principal-axis directions. The purecreep test under constaa . This can be done without too
index effective shear modul $,, K S5, andK §; can also be  much difficulty by adopting, e.g., a computer-controlled
obtained from the wave speed measurement of shear hofieedback system. Then, for an orthotropic specimen loaded
zontally polarized transverse waves of the pure mode propdarallel to the principal axis, the thermal-expansion coeffi-
gating at an oblique angle in symmetry planes. The mixedientajj can be obtained via E432), (37), or (38) and the
index elastic stiffness coefficient®ff-diagonal elemenys specific heat<C and C; can be calculated using Eq&5),
can be determined from the wave speed measurements Gi6), and(50). In the moderate stress range below the elastic
quasilongitudinal or quasitransverse waves propagating at dfinit of a material, variations of the thermal-expansion coef-
obligue angle in symmetry planes. ficient and specific heat with stress or strain are small and
Thus, all the elementk 5, of the K® matrix of Eq.(86) ~ ¢an be estimated to good accuracy via E¢2), (44), and
can be obtained from the measurements of wave speeds (1), where one can resort to the temperature dependence
various directions of a stressed medium. Then, one can caflata of the effective elastic compliance coefficients and
culate its inverseQS=[wa], the effective elastic compli- thermal-expansion coefficients at the stress-free natural state.
ance matrix, which is more than sufficient to determine the
compressibility, bulk modulus, effeptive_adiabatic Poisson’s ACKNOWLEDGMENTS
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