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Location of pointlike acoustic emission sources 
in anisotropic plates 

Bernard Castagnede, Wolfgang Sachse, and Kwang Yul Kim 
Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853 

(Received 8 February 1989; accepted for publication 18 May 1989 ) 

In this paper is described a method by which a pointlike source of acoustic emission can be 
located in an anisotropic plate. The method is applicable for a source in an anisotropic solid of 
arbitrary symmetry as long as the principal acoustic axes of the material are known a priori. It 
is shown that from the time-of-flight differences of particular features in the waveforms 
detected by any pair of sensors, a set of nonlinear transcendental equations can be formed in 
which the coefficient of each term in the equations is related to the time-of-flight differences, 
the geometrical parameters of the array, and the wave speeds of quasiwaves propagating along 
each source/receiver path. For waves propagating in principal planes, the analytical 
expressions for the wave speed values are used. Extension to nonprincipal planes is obtained by 
computing the eigenvalues of the Green-Christoffel tensor. Determination of the optimum 
location of the source is found by minimizing the Euclidean functional associated with the set 
of transcendental nonlinear equations. The results obtained with numerical simulations of two- 
and three-dimensional source-location problems are presented to illustrate several 
characteristic features of the solution. Also shown are the results of two-dimensional source- 

location measurements made on specimens of a unidirectional fiber-glass-reinforced composite 
material. The results demonstrate the efficiency of the algorithm in locating a source of 
emission. 

PACS numbers: 43.20.Rz, 43.40.Ph 

INTRODUCTION 

The problem of locating a source of acoustic emission in 
a structure is of importance in geophysics as well as nondes- 
tructive materials testing. To solve this problem, knowledge 
is needed about the radiation characteristics of the source, 
the propagation of the elastic waves between the source and 
the receivers, and the geometry of the receiving sensor array. 
The solution of this problem for the most general case is 
enormously difficult. In actual applications, simplifications 
are sought to obtain a solution. When the source is small 
compared to the source-receiver separation, the material is 
homogeneous and isotropic, and the sensors are pointlike 
and are positioned in a geometrical configuration, consider- 
able simplifications result in the analytical and numerical 
treatment. The assumptions used must, however, be physi- 
cally realistic for particular measurement situations. In seis- 
mology, the earth's crust possesses discontinuities and gradi- 
ents in its mechanical properties. • To describe the 
propagation of elastic waves in the earth, very special analy- 
tical methods have been utilized, and the location of seismo- 
logical sources relies on numerical procedures utilizing com- 
plex algorithms which are modified with succeeding events. • 
For the study of materials and, in particular, the dynamics of 
failure processes and wave interactions in them, the quanti- 
tative acoustic emission (QAE) technique has been devel- 
oped. The basis of the technique is that a source in a material 
emits elastic waves which are detected at the surface of the 

structure and AE signal-processing techniques are then used 
to process these signals to identify and to characterize the 
source of emission. The source corresponds to a dynamic 
force field change and an irreversible release of energy at the 

source point. It may be the result of the motions of disloca- 
tions, the initiation and propagation of a crack, phase trans- 
formations, or the action of simulated sources such as the 
thermoelastic and ablative effects accompanying the interac- 
tion of a laser or similar source and a material (cf. Ref. 2). 
The first and essential requirement is to locate the source of 
emission. This paper is restricted to this problem and, in 
particular, to the case of a source in an anisotropic material. 

All source location techniques rely on measurements of 
the arrival time of a particular wave mode at a sensor. The 
measurement can be made directly by time-interval elec- 
tronic measuring counters, or indirectly from analysis of di- 
gitized waveforms via their Fourier phase function or a cor- 
relation analysis. It is recognized, however, that in many 
practical situations, errors arise from multiple events and 
background noise. Also, arrival-time measurements are 
prone to errors because of wave attenuation, scattering, and 
material and geometric dispersion effects, some or all of 
which are present in real materials. 3 

To overcome these difficulties, various modified source- 
location techniques have been proposed. Included are the 
approximate zone location and hit sequence techniques by 
which the sensor or the small number of sensors at which the 

first arrival of an AE signal define a region of a structure in 
which the AE source is located. While these do not give an 
exact location, they appear to work well in highly absorbent 
materials. 3 For locating pointlike acoustic emission sources 
in homogeneous isotropic solids, triangulation methods 4 are 
generally used. These approaches are extended to different, 
geometries, 5 and might also include least-squares numerical 
techniques 6 and correlation methods. 7'8 

If the source of emission is located at x s, i.e., (x•S,x• s x s ,3) 
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in a structure and the AE is detected by N sensors whose 
location is specified by x k (k = 1,2,3,...,N), then the distance 
between the k th sensor and the source can be determined 

from measurements of the arrivals, t k, of particular waves at 
the sensor, given by 

and 

D •= (t •-- to)C, (2) 

where c is the speed of propagation of the wave and to is the 
unknown time origin of the source. Since there are also the 
three unknown source coordinates, the arrival times deter- 
mined from the waveforms detected at four sensor positions 
are required to uniquely locate a source. It is advantageous 
to use more than four sensors since the system of equations 
becomes over determined and least-squares processing al- 
gorithms can be used to obtain the optimal solution to the 
measured arrival-time data. 9 Critical to the above procedure 
is knowledge of the speed of propagation of a particular wave 
mode. Unfortunately, because of geometric wave-dispersion 
effects, the identification of wave arrivals of equivalent wave 
modes in signals detected by sensors located at widely differ- 
ent distances from the source point becomes difficult. This 
has led to the development of a small-array sensor •ø for 
which the source of emission is always exterior to the array. 
For this case, the source-location procedure can be based on 
measurement of the arrivals of two dominant pulses in a 
waveform whose speeds of propagation, c• and c2, are 
known. If the time difference between the two modes detect- 

ed at the k th sensor is specified by At • then the range to the 12, 

source from that sensor is given by 

D • -- A t•2 [c•c2/(c• -- c2) ]. (3) 
The angle between the axis of the array and the source is 
subsequently found by triangulation. 

To be able to simulate numerically various causes of 
systematical errors in the source-localization process, statis- 
tical methods have been extensively used. For instance, stag- 
gering the positions of the sensors, l• the presence of noise, •2 
and the dispersive nature of signals in guided geometries •3 
have all been studied. Furthermore, some systems that ac- 
complish the task of locating an AE source in isotropic mate- 
rials in a simple manner have been described. •ø'14 

Determination of the location of a source of emission in 

an anisotropic material is complicated by the fact that the 
speed of propagation of each wave mode is dependent on the 
propagation direction in the material. While it has been re- 
cognized that a solution of this problem is of importance in 
successfully using AE measurements in anisotropic materi- 
als, such as in structures fabricated of composite materials, it 
has not been possible to do so until recently. •5 Our initial 
contribution in obtaining a solution to this problem included 
a preliminary experiment which clearly demonstrated the 
correctness of the basic algorithm with real d•tta. 16 We re- 
port here on new results and give a detailed description of the 
method. Also, we include extensions of the location process, 
to the full three-dimensional source-location problem. To 
ascertain some features as well as some inherent limitations 

of the solution for a general anisotropic medium, numerical 

simulations have been extensively used. The general solution 
of the basic localization problem of a pointlike source in an 
arbitrary anisotropic plate is discussed in the following sec- 
tion. The use of numerical simulations for the two- and 

three-dimensional cases are discussed in Sec. II. Then, in 
Sec. III are presented experimental data for a unidirectional 
composite material. This is followed by concluding remarks 
in Sec. IV. 

I. GENERAL SOLUTION OF THE 3-D SOURCE- 
LOCATION PROBLEM 

The solution of the general three-dimensional source- 
location problem in an anisotropic solid is a formidable task. 
Here, we restrict ourselves to a simpler problem by adopting 
the following assumptions: (1) We suppose that the wave 
propagation occurs in an infinite platelike structure whose 
thickness is uniform; (2) the material is a perfectly elastic, 
homogeneous anisotropic solid; (3) the wave dispersion is 
negligible; (4) the active areas of the source as well as the 
receivers are pointlike; (5) the order of the elastic symmetry 
of the solid is restricted to be orthorhombic or higher; and 
(6) the principal axes of the solid are known a priori and are 
oriented along the coordinate axes of the specimen. 

The first assumption is often readily realized in practice 
since platelike elements are very common structural compo- 
nents. The second assumption, which is indirectly linked to 
the third one, might appear somehow restrictive because 
perfectly elastic bodies are rare, especially when applications 
in the field of synthetic materials such as composites are 
considered. Our approach here is to describe a basic problem 
in a very general way. For that purpose, we need to make 
several simplifications, and the absence of dispersion will be 
one of them. It may be possible to include the influence of 
dispersion in the treatment, and this point will be addressed 
later. The fourth assumption is met by many actual sources 
of emission and by using small aperture sensors to detect the 
signals. By definition, a pointlike source or a receiver is one 
whose active region is small compared to the sensor/source 
separation and whose dimension is smaller than the domi- 
nant wavelength in the AE signal. In many applications this 
assumption is easily met. Excluded from our analysis are 
very small arrays of receiving sensors for which the source is 
located exterior to the array. Also excluded are extended 
sources. It may be possible to extend the method described 
here to such sources, but this will not be developed further 
here. The last two assumptions are often made in describing 
the mechanics of composite materials. Most engineering ma- 
terials are characterized by high-symmetry order in their 
elastic properties. Generally, an orthorhombic symmetry is 
sufficient to describe the properties. The last assumption, 
which involves the superposition of the geometric and crys- 
tallographic axes, can always be verified by a preliminary 
calibration procedure. 

The placement of the sensors comprising the receiving 
array is of considerable importance. In some cases, the sen- 
sors are positioned on one or both surfaces of the test speci- 
men and the surfaces themselves correspond to a principal 
plane of the material. This is usually the case for nearly all 
engineering sheetlike materials, and such a testing situation 
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is not too restrictive. On the other hand, the last assumption 
is inappropriate when making measurements on single-crys- 
tal specimens which have been cut in an arbitrary orienta- 
tion. Thus the method that is proposed here is intrinsically 
limited to ordinary engineering materials. 

Dealing only with that last case, several configurations 
for the sensors are possible, in terms of their positioning. 
Figure 1 describes three common configurations. These in- 
elude the random distribution, the two orthogonal lines case, 
and the circular configuration. Each of these arrangements 
has its advantages and disadvantages. For instance, the ran- 
dom distribution might be of interest when dealing with a 
stochastic problem, i.e., when the source location might be 
located at an arbitrary site in the plate. This is similar to the 
measurements in quantitative seismology. In the testing of 
materials, however, particular regions of a structure are 
more critical or, because of the stresses which are applied, 
are more likely to fail and hence need to be especially moni- 
tored. We limit ourselves here in the description of determin- 
istic process only. For this situation, a more regular distribu- 
tion of the sensors is desirable, and thus the two orthogonal 
lines and circular distributions are of special interest. The 
formulation we will analyze in detail will be the circular con- 
figuration. However, the calculations for the two-orthogo- 
nal lines case are similar but simpler. 

We consider an anisotropic, flat plate of thickness 2h 
with the distribution of pointlike piezoelectric sensors over 
both surfaces. Suppose that a pointlike acoustic emission 
source S is located in the plate at coordinates x• s, x2 s, and x• s 
as shown in Fig. 2. By selecting a given pair of sensors (k,m), 

x2 COMMENTS FOR FIGURE 1 

k (a) General case 
S(x s x s) 

,, • l•=R2+d• 
x 1 

x 

..•S (x s x s 1 • 2 ) 

X•X • X 1 

S 

-- 2x• x• s -- 2x2/, x 2 , 

with an analogous expression for l,,, 
where 

R '-= (x•)'- + (x•)'-, 
2 

d • = x,• + x•. 
(b) Two orthogonal lines 

• 2 2x2• x•, l• = R- +x2• - 
• 2 2Xl,n s l 2 -- R- + x•,, -- x•, 

where 

R 2= (x•)'- + (x•) 2 
with k along axis X2 and m along axis 
X•. 
(c) Circular array 

l• --R2 q- d 2 

-- 2 dx• s cos a• 

-- 2 dx2 s sin a•, 

, x• ) with an analogous expression for ! .... 
where 

x• R-= (x•S) - + (x2)- 
a•,a,,' angular coordinates for 

sensors k,m. 

FIG. 1. Various spatial distributions for the array of sensors. 

FIG. 2. Geometry in the general case. 

where k refers for the sensor positioned on the upper surface 
and rn for a sensor mounted on the bottom surface, a simple 
time-difference equation between the arrivals of the P-wave 
arrivals at the two sensors follows from Eqs. ( 1 ) and (2): 

Atp (k,m) -- [Cp (nk)]--' x/(h + x3S) 2 + 

--[Cp(nm)]-'4(h--x3S)2q-12m . (4) 
Here k,m = 1,...,Nwith N> 3, where Nequals the number of 
sensors on each surface of the structure being monitored. 
The total number of sensors in this case is 2N, but this is 
arbitrary. The quantities lk and l m represent the distance 
between source and sensor k or sensor rn projected onto the 
top or bottom surfaces of the plate, respectively. The wave 
speeds of the quasilongitudinal wave along the two source/ 
receiver acoustical paths are specified by %(nk ), and 
Cp (r/m ), respectively, where n• and r/m are the correspond- 
ing direction cosines of the propagational paths. 

The distances l• and l m depend on the •:hosen sensor 
array geometry and are functions of the respective in-plane 
coordinates of the source and sensor. Some examples for 
these quantities are shown in Fig. 1. As stated earlier, the 
equations to be presented which are relevant to the numeri- 
cal simulations, as well as the experiments to be described, 
will be based on the circular array geometry. But the imple- 
mentation of other geometries is always possible by changing 
the numerical expressions for l• and l m . 

The wave speeds cp (n•) and cp (nm) are functions of the 
direction cosines n k and r/m, respectively. The wave propa- 
gation is in one of the principal planes in only a few direc- 
tions of the specimen. If for convenience X•, X2 and X3 are 
principal axes of symmetry, then the direction cosines are 
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given by the following expressions for each pair of N sensors, 
k,m = 1,2,...,N: 

k x k • x S hi,2 -- ( 1,2 1,2 )/D, 

n3 • = (h + x•)/D, 

m __ (X•..2 S t n •,2 , -- x •,2 ) /D , 

n• -- (h - x])/D', 

(5) 

where 

D-- [(h +x•) 2 + (x• --xf) 2 + (x2 • -x2S) 2]'/2, 
D'= [ (h - x•) 2 + (x• - xf) 2 + (x7 - x2S) 2 ] 1/2. 

However, the direction of wave propagation is generally 
in nonprincipal planes for which there are no analytical ex- 
pressions for the wave speeds. •7 One needs therefore to com- 
pute the eigenvalues of the Green-Christoffel tensor, some- 
times called the propagation tensor Fit, by using the 
characteristic equation 

detIF, - pc2rS,l I = 0, (6) 

where [`it--=Co.t, lnjnt, and where (itj, k,l= 1,2,3) with Cok • is 
the stiffness tensor of the material. The term p is the density 
of the material, •5i• is the Kronecker delta, and c are the wave 
speeds (quasilongitudinal and quasishear) of the wave prop- 
agating in a particular direction in the material. The direc- 
tion cosines appearing in this equation are identical to those 
given in Eq. (4) for the top hnd bottom sensors. For an 
orthorhombic material, the propagation tensor has the com- 
ponents 

["11 = /'/• ell "Jr-/'/22 C66 ..qu H• G5, 

["22- n• GO -Jr- n] (722 + n• G4' 

['33- "• C55 + "22 G4 21-///• C33, 

[`2• = F12 = (C12 q- C66)n•n2, (7) 

[`31 = [`13 = (C13 q- C55)t/lt/3, 

[`32: [`23 : (C23 q- C44)F/2F/3, 

where the elastic constants have been written with the con- 

ventional abbreviated notation (cf. Ref. 17, p. 64). 
The eigenvalues of the Green-Christoffel tensor are 

computed by using a cyclic Jacobi method with threshold 
value sweeps. •8,•o Some numerical results using this scheme 
are presented in Sec. IID. We note that when dealing with 
thin plates, i.e., the ratios 2h/dand 2h/R • 1, and the propa- 
gation occurs approximately in one of the principal planes 
(cf. 1,2 ). 

For example, in the two-dimensional problem in which 
x3 is not an unknown, it suffices to mount the sensors onto 
only one surface of the specimen. In such a case, analytical 
expressions for the wave speed curves are available for mate- 
rials of specified elastic anisotropies. •7 For instance, the 
wave speed for the quasilongitudinal mode of an orthorhom- 
bic material in the principal plane (1,2) is given by 

c,(O) - (8) 
where 

A(O) = Cll cos 2 0 + C22 sin 2 0 + C66 , 
B(O) = (Cll cos 2 0 + C66 sin 2 0) 

X (C66 cos 2 0 + C22 sin 2 0) 

-- (C12 -Jr- C66)2sin2 0 cos 2 0, 
with 

X 1 • X 1 

0--arccos (x•_x•i2..•i•c2•_x2s)2 . (9) 

This equation is applicable for each sensor, i.e., k = 1,2,...,N, 
as shown in Fig. 3. 

In the general three-dimensional source-location prob- 
lem, the time-of-flight measurements result in a system of 
equations according to Eq. (4). Since there are only three 
unknown source coordinates, x• s, x s and x s this system is 2s 3s 

overdetermined and an optimization technique to efficiently 
solve this problem can be used. 18 For that purpose, Eq. (4) is 
rearranged, squared twice, and after some algebraic manipu- 
lations one obtains the following set of nonlinear equations: 

k[J(X S) = Ai(x3S) 4 -Jr-A2(X•) 3 -Jr- •3X• (X•) 2 

-Jr- •4x2S (X•) 2 -Jr- •5 (x3S) 2 -Jr- •6(XlS) 2 

q-A7(x2S) 2 q-A S S S S S S 8X1X 2 q- A9X 1X 3 q- A 10X2X 3 
s -[- AllX• x -[- A12x 2 -[- A13x • -[- A14m0, (10) 

where x s_= x • s x s x s , 2, 3 are, as before, the coordinates of the 
source. The coefficients A i with i = 1,2,..., 14 correspond to 
each (k,m) pair of sensors and they are given by the expres- 
sions 

, h) s(x• ,x•, 

N-1 N 2 1 

h 

x• • s 

FIG. 3. Detailed geometry for the circular array of sensors. 
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•. = [•.• (o,•) - •.• (o..) ] ' . 
• = 4,• [• (o,•)- •$(o..)]. 
A 3 = 4d [ c• ( Ok ) C• ( 0 m ) ( COS a m + COS ak ) 

4 

- c• ( 0• )cos a• - c• ( 0• )cos a • ] 
A 4 • 4d [ c• ( 0k ) c• ( 0• ) (sin a• + sin a k ) 

- c•(O• )sin a• - c•(O• )sin a• ], 
•(0•)] • •s = •k• [ c• ( O• ) - c. 

- • [c• (O• ) + c• (O• ) ] 
2 

+ •[c•(O•)+ c,(O•)]•). 
• = 4e•[c•(O• )•os • - c•(O• )•o• • ]•. 

• (0k)sin a• - c• (0•) sin a• ]2 A• - 4d•[% , 
4 4 

•8 = 8d 2 [ % (Ok)COS a• sin a• + % (0•)cos a• sin a• 

--c•(Ok)c•(O•)sin(a• + ak)], 
•9 • 8hal [c•(O m )cos •k -- C• (0 k )COS •m 

+ c• (o•)c• • o• )(•os • - •os • ) ], 
• •o = 8hd [ c• (0•)sin a• - c• (0•)sin a• 

+c•(Ok)c•(O•)(sinak - sin a•) ], 
2 2 

+ • [ c• (o•)c• (o•)(•os • + •os • ) 

- c• (o•)•os • - c; (o•)•os • ]). 
• •2 = 4d •K • [c•(O• )sin a• • c•(O• )sin a• ] 

+ K• [ c• ( O • ) c• ( O• ) ( sin a• • sin a•) 
-- c• (0•)sin a• -- c• (0•)sin a• ]), 

•13 • •h [C•(0m)- C•(0k)] 

x •• - k• [c• (o•) + c• (o• 
• •(o•)-c•(O•)] • •14 • K•m • k • [c• 

•(o•)], - 2k•• [c• (0•) + c. 

(11) 

where 

Kk• = •tp ( k,m ) c• ( O k) c• ( Om ), 
k, = h 2 + R 2 +d 2, 

and k,m = 1,...,N, where N = the total number of sensors 
(mounted on one surface). Here, R is the projected radius 
between the source and the center of the circular array of 
sensors whose radius is d as shown in Fig. 3. 

There are a total of N 2 equations in Eq. (10). To solve 
this overdetermined system, the Euclidean functional F(x s) 
= Zi•2(x s) is defined and then minimized by using a modi- 
fied Newton-Raphson algorithm. •8'2ø Equation (10) repre- 
sents a system of transcendental equations in which each of 
the coefficients A i, i- 1,..., 1 4, listed in Eqs. ( 1 1 ) is linked 
through the wave speeds to the unknown source coordinates. 

To obtain additional insight into this, we consider the 
two-dimensional case for which the quasilongitudinal wave 
speeds are given by Eq. ( 8 ) when the direction of wave prop- 
agation 0, as given in Eq. (9), is a function of the unknowns 
x• s and x• s through a complicated combination of circular 

and Pythagorean functions. This clearly shows the transcen- 
dental nature of Eq. (10). To work out the minimization 
process of the functional, one needs to compute its gradient 
and the Hessian matrix, which are given by 

0F(xS_•_) = 2• (x s) 09• (xS_•_), 
&,s &,s (12) 

c32F(xs) = 2•(x s) •(xs) 

+ 2( .• ( x s) 0x• )('0•(xs) 
where id = 1,2,3. Then, the unknown source coordinates 
can be determined according to the iterative scheme 

• =f(xS) I<.• . 

(13) 

where id = 1,2,3 and where ( )(- •) represents the inverse 
matrix. 

The principal difference of the above convergence 
scheme with the regular Newton-Raphson method is that 
the coefficients in Eq. (1 1 ) are scalar fields and must be 
recalculated after each convergence of Eq. (13), which in 
turn means that the system of equations, Eqs. ( 1 0), is solved 
several times, until stationary values for the coefficients are 
obtained; i.e., convergence of the unknown source coordi- 
nates is found. 

II. NUMERICAL SIMULATIONS 

A. Two-dimensional case: Propagation in principal 
planes 

When considering a thin plate, i.e., d>•2h and/or 
R >• 2h, and when the third coordinate x• is fixed to be x• 
= -- h, or - + h, one might simplify the complete three- 
dimensional problem to a far simpler case in which ( 1 ) sen- 
sors need only to be mounted on one surface of the structure, 
and (2) the wave propagation is restricted to be in the princi- 
pal plane (1,2). In such a case, Eq. (4) can be rewritten as 

Atp(k,m) = [cp(Ok ) ]-'x/h 2• + l• 

-- [cv(Om) ]-'x/h2• + 12m, (14) 
where k,m = 1 .... ,N and k -% m. For convenience the thick- 
ness of the plate has been redefined as h• rather than 2h and 
where cv (0k) and cv (Om) are given by Eqs. (8) and (9). 
There are 

3) N! 2! (N- 2)! 

such equations. 
For the in-plane problem, only four elastic constants, 

i.e., C•, C22, C•2 and C66, are needed. The system of Eqs. 
(10) then simplifies to the set of quadratic transcendental 
equations: 

•b(x S) -- B1 (xf) 2 ..ql_ B2(x•) 2 ..ql_ B3xfxf -Ji- B4 xf 

+ Bsx• + B6•"0, (15) 
where 
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B1 = A6, B2 -- A7, B3 = As, 
B4:A11, Bs=A12, B6=A•4. 

It should be noted that the method extends to the two other 

principal planes ( 1,3 ) and (2,3) of the orthorhombic sym- 
metry, and to other systems of symmetry by performing a 
circular permutation on the stiffness coefficients. 21 These 
operations are summarized in Table I. For other systems of 
symmetry there are either no analytical expressions for the 
wave speed curves, even in principal planes, or they may be 
given by equations which differ from Eq. ( 8 ), and these can 
be found in several texts. 17.22 

B. Numerical results 

The parameters used during the numerical simulation 
are compiled in Table II. The elastic constants used in the 
simulation were those for a uniaxial fiberglass epoxyde resin 
composite material. 21 To simulate the influence of random 
errors on the time-of-flight data, a perturbation procedure 
has been employed using a quasinormal density of distribu- 
tion. Next, the algorithm was run ten different times for a 
given set of parameters. For statistical purposes, averages, 
standard deviations, and coefficients of variation were com- 
puted. Numerical results obtained for three different cases 
are presented. In Table III are listed the results obtained 
when the convergence of the algorithm was tested for var- 
ious locations of the AE source. Beyond the angular depen- 
dence of AR/R and ZXa at a given R, which may change for 
other sets of the parameters, it is seen that there is a dramatic 
decrease in the accuracy of the location process when the 
source is located exterior to the array of sensors. This trend is 
significant, as it remains unchanged for other combinations 
of the parameters. The difficulty in recovering the source 
location is shown by the increase of the number of iterations 
required from just a few at R = 5.00 cm to several tens when 
R = 15.00 cm. This clearly shows the impediments at con- 
vergence of the noisy data when the source is situated far 
from the center of the array of sensors. In the numerical 
simulations it was found that the algorithm usually did not 
converge for the two-dimensional source-location problem 
with R > 50.00 cm. In Table IV are listed the results about 
the influence of the number of sensors, while in Table V are 
the results of the role of systematical errors on the values of 
the elastic constants on the recovered coordinates of the AE 

source. 

TABLE II. Parameters of the 2-D numerical simulation. 

d = 10.00 cm 

R = variable in Table III,= 5.00 cm in Tables IV and V 
a -- variable in Table III, from 0 ø to 90 ø with a 10 ø angular step, -- 45 ø in 

Tables IV and V 

h -- 0.01 cm 

n -- 8 in table III, variable in Table IV, = 4 in Table V 

d(Atp ) = 1% in Table III, = 2% in Table IV, = 0% in Table V 
p = 2.108 g/cm 3 
C• -- 26.30 GPa 
C22 = 65.50 GPa 
Ci2 = 9.58 GPa 
C66 = 10.50 GPa 

C. Extension to the three-dimensional problem 

The full three-dimensional source-location problem is 
much more challenging than its two-dimensional counter- 
part, as the determination of the X 3 coordinate (or x s i.e., 3, 

the location across the thickness of the structure) is possible 
that way. Applications to detect and locate defects in com- 
posite materials are of special importance. Nevertheless, to 
solve the problem, one needs to return to the general solution 
given in the first section. By performing extensive numerical 
simulations, it has been possible to clearly show that the 
convergence is extremely difficult with noise-corrupted data 
when the sensors are distributed over only one surface of the 
structure, on either the top or bottom surfaces. Such a testing 
situation may preclude a correct convergence, as there is 
nonuniqueness of the recovered source location. For exam- 
ple, if the measurements are made with a circular array on an 
isotropic solid, it is obvious that any position along the axis 
of the circle yields the same source-location result. More 
generally, the q- x3 s and the -- x3 s coordinates of the source 
lead to an identical result. Despite that inherent restriction, 
there is a simple solution to the three-dimensional problem, 
which may, albeit, not always be practical, that is, by mount- 
ing the sensors on both sides of the plate, as was described in 
the previous section. The algorithm defined in this manner 
can be extremely efficient. Some results obtained by using a 
numerical simulation are introduced in the following subsec- 
tion. 

TABLE I. Circular permutations on stiffness coefficients. 

System Orthorhombic" 
Plane (1,2) (1,3) (2,3) 

Hexagonal ".b 
(1,2) _ (*,3)e 

Tetragonal c Cubic" Isotropic d 
(1,2) (*,3) e (C) r (I)g 

Cii Cii Cii Cii 
Cll C33 Cll Cll 
C.6 C44 C44 C44 
Ci2 Ci3 Ci2 Ci2 

For all classes of symmetry. 
With for plane (1,2) A = 2C66/(Cll - Ci2) = 1. 
For Hermann-Mauguin classes of symmetry 422, 4ram, 42m, 4/mmrn. 

dWithA' = 2C44/(Cll -- Ci2) = 1. 
( *,3 ) = Any plane of propagation comprising axis 3. 
(C) Propagation in a cube face. 
(I) Propagation in any plane. 
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TABLE III. Algorithm convergence for various source locations. 

R - 5.00 cm R = 10.00 cm R -- 15.00 cm 

a (deg) AR/R( % ) Aa(deg) AR/R(% ) Aa (deg) AR/R( % ) Aa (deg) 

0 0.146 0.183 0.324 0.232 1.523 0.529 

10 0.170 0.100 0.306 0.140 2.414 0.485 

20 0.150 0.189 0.311 0.174 2.709 0.713 

30 0.138 0.163 0.349 0.138 2.692 0.550 

40 0.122 0.096 0.338 0.149 1.499 0.293 

50 0.114 0.059 0.467 0.113 2.329 0.372 

60 0.236 0.072 0.309 0.101 2.400 0.256 

70 0.350 0.046 0.225 0.047 0.502 0.051 

80 0.204 0.120 0.159 0.026 0.687 0.087 

90 0.242 0.244 0.091 0.049 2.094 0.049 

D. Numerical simulation results 

To describe this problem in a very general way, a materi- 
al whose elastic properties possess an orthorhombic symme- 
try has been considered. The mechanical parameters used 
during the numerical simulation are listed in Table VI. The 
elastic constants were measured for a tropical wood 23 by use 
of an advanced ultrasonic spectro-interferometer. TM Some 
significant results of the numerical simulation are listed in 
Tables VII-X. From these results one can emphasize the 
following general features: ( 1 ) For R and a, the convergence 
is extremely good in the three-dimensional case compared to 
the two-dimensional one. Also, the number of iterations is 
surprisingly very stable in this case, requiring usually only 
five to seven. (2) The reduction in the accuracy of recover- 
ing R and a when increasing R as noted in Sec. IIB is less 
drastic in the three-dimensional case. This is seen if one com- 

pares the third column of Table VII with the fourth entry of 
Table III. The convergence for R and a in the three-dimen- 
sional problem remains excellent at R = 50.0 cm, whereas 
there is not even convergence for the 2-D case as was noted 
previously. (3) Unfortunately, the convergence for x• is not 
as good as for R or a. When increasing R, the drop of accura- 
cy for the recovered source coordinate x• is considerable 
going from 1 to 7 when modifying R from R = 5.00 to 50.00 
cm versus a change from 1 to 2 in terms of R. Thus, to obtain 
an acceptable accuracy for the determination of x3 s, a very 
stringent precision on the time delay measurements is re- 
quired, something in the range of a few ns to achieve a 1% 
accuracy of the location. (4) The influence of other param- 

s 
eters such as the value of x3 or the orientation of the princi- 
pal axes, and therefore the values of the elastic constants in 
any given direction, is of considerable importance as the re- 
sults tabulated in Tables IX and X show. Nevertheless, the 
variations in the results appear to be far smaller when com- 
pared to the influence of other variables such as the range R 
or N, the number of sensors. 

III. EXPERIMENTAL RESULTS FOR A UNIDIRECTIONAL 

COMPOSITE 

A. Sample description 

The samples used in the experimental work were fiber- 
glass-reinforced materials from the Extren 500 series, 25 
which were made with an isophthalic polyester resin. This 
type of material is generally used in structural applications 
involving corrosive environments and is manufactured by 
the pultrusion process. The final product is porous and has a 
medium homogeneity as well as rough surfaces. These fea- 
tures add some inherent obstacles to the source-location pro- 
cess, which are related to dispersion and attenuation of the 
elastic waves propagated in this material. 

Plates that were 304.8 mm square and of thickness 6.35 
mm were tested. The glass fibers lay in the plane (1,2) and 
were mainly oriented along one principal direction, say in 
the direction X!. Thus these composite materials are to a 
good approximation unidirectional. The ratio of the Young 
moduli in the two principal in-plane directions (e.g., X• and 
X2) was approximately 1.5. 

TABLE IV. Algorithm convergence for different numbers of sensors. 

cx=(a.•/x) 
(%) 

R 5.010 0.044 0.88 
n=4 

a 44.891 0.308 0.67 

R 4.997 0.013 0.26 
n=8 

a 45.013 0.228 0.51 

R 5.004 0.008 0.16 
n=16 a 45.030 0.073 0.16 

TABLE V. Influence of systematical errors on stiffness coefficients on the 
algorithm convergence. 

AR /R ( % ) Aa/a( % ) 

C 11 + 10% + 1.78 - 3.06 
-- 10% - 1.55 + 3.32 

C22 + 10% + 2.52 + 3.71 
-- 10% - 1.79 -4.68 

C12 + 10% +0.87 - 0.75 
-- 10% - 0.86 + 0.77 

C66 + 10% +2.21 -1.80 
-- 10% -- 2.22 + 2.05 
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TABLE VI. Parameters of the 3-D numerical simulation. TABLE VIII. Algorithm convergence for different numbers of sensors. 

d = 10.00 cm 

R = variable in Table VIII, = 15.00 cm in Tables IX-XI 
a = 30.00 ø 

h = 2.00 cm 

n = 8 in Tables VIII, X, and XI, variable in Table IX 

d(at,) = 1% 
p -- 1.280 g/cm 3 
Cll = 7.45 GPa 
C22 = 8.30 GPa 
C33 = 29.30 GPa 
C44 = 2,88 GPa 
Css = 2.71 GPa 
C66 = 1.65 GPa 
Ci2 = 4.36 GPa 
Cl3 = 3.97 GPa 
C23 = 4.97 GPa 

B. System measurements 

To test the two-dimensional version of the algorithm, an 
ultrasonic point-source/point-receiver materials testing sys- 
tem was used. 26'27 Such a system has been used with consid- 
erable success to determine the frequency-dependent wave 
speeds and attenuations of a material. A convenient simulat- 
ed acoustic emission source is the fracture of a glass capil- 
lary, 0.05-mm i.d. and 0.08-mm o.d. The rise time of the 
resulting step force excitation is typically about 50 ns. The 
sensors used here are wide bandwidth piezoelectric trans- 
ducers whose aperture was 1.3 mm. The detected acoustic 
emission signals were amplified 60 dB with broadband 
preamplifiers and recorded on transient recorders operating 
with sampling rates ranging 1-60 MHz with 10-bit resolu- 
tion. Four recording channels were typically used to make 
the measurements. Although the minimum number of sen- 
sors for a two-dimensional source-location determination is 

three, for practical reasons, the same sensors were used both 
for the source-location determination and for the calibration 

of the material anisotropy which is discussed in the next 
subsection. 

C. Calibration procedure 

Unidirectional composite materials are properly de- 
scribed by a hexagonal symmetry. They are elastically trans- 

cx=(cx/x) 
(%) 

R 15.001 0.020 0.13 

n = 8 a 30.026 0.149 0.50 

Z 1.028 0.127 12.36 

R 15.001 0.015 0.10 

n = 16 a 29.962 0.043 0.14 

Z 1.111 0.041 3.66 

R 14.999 0.005 0.03 

n = 32 a 29.984 0.033 0.11 

Z 1.004 0.019 1.90 

versely isotropic whose properties are fully specified with 
five independent elastic constants. Because the discussion is 
restricted to the two-dimensional case and to measurements 

made on the principal plane (1,2), only four elastic con- 
stants, C 11, C22, C12, and C66 , need to be determined. These 
moduli are determined from measurements along a few par- 
ticular directions of propagation. The results are 

2 

(Cll/tO)=Cpl, (%2/tO)•--Cp22, (C66/tO)- C•, (16) 
C12 •- ( [ 2t0c425 -- ( ell -Jr- %2)/2 -- C66 ]2 

-- [(ell- %2)/212} 1/2 -- C66 , (17) 

where Cpl and Cp2 are the wave speeds of the longitudinal 
waves along the principal axes 1 and 2, Cs is the wave speed 
of the transverse wave along the principal axes 1 or 2, and c45 
is the wave speed of the quasilongitudinal wave along the 
diagonal axes D l and D 2, i.e., at -+- 45 deg; p is the density of 
the material. 

To determine the required wave speeds as precisely as 
possible, several measurements were performed by breaking 
the glass capillary tubes in numerous referenced locations 
along the axes of interest, as shown in Fig. 4. The longitudi- 
nal wave speeds were determined by simple chronometry on 
the recorded waveforms. The shear wave speed Cs was esti- 
mated by other means. The results of the measurements were 

%1 -- 0.377 cm//•s, Cp2 -- 0.335 cm//•s, 
Cs = 0.175 cm//•s, c45 = 0.346 cm//•s. 

We note that the density of the material is not required if 

TABLE VII. Algorithm convergence for various source locations. 

cx = (rrx/ x) 
(%) 

R 49.960 0.090 

R: 50 cm a 30.036 0.132 

Z 1.16O 0.406 

R 15.001 0.020 

R = 15 cm a 30.026 0.149 

Z 1.028 0.127 

R 4.998 0.005 

R = 5 cm a 30.061 0.118 

Z 0.992 0.049 

0.18 

0.44 

35.02 

0.13 

0.50 

12.36 

0.09 

O.39 

4.91 

TABLE IX. Algorithm convergence function of the Z position. 

cx = (rr•/ x) 
x a• (%) 

R 14.999 0.017 0.11 

Z = 0.5 cm a 30.042 0.110 0.37 

Z 0.497 0.123 24.71 

R 15.001 0.020 0.13 

Z = 1.0 cm a 30.026 0.149 0.50 

Z 1.028 0.127 12.36 

R 14.991 0.017 0.12 

Z = 1.5 cm a 30.075 0.122 0.41 

Z 1.357 0.146 10.76 
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TABLE X. Algorithm convergence function of the material orientation. 

(%) 

R 15.015 0.047 0.31 

n, -- n• a 30.058 0.127 0.42 
Z 1.016 0.077 7.61 

R 15.012 0.049 0.33 

n, = n2 a 29.934 0.282 0.94 
Z 1.087 0.071 6.53 

R 15.001 0.020 0.13 

/'/t = /'/3 O• 30.026 0.149 0.50 
Z 1.028 0.127 12.36 

a source of acoustic emission is to be located. The procedure 
is described in the following section. 

D. Isotropic and anisotropic optimizations 

When the calibration procedure is completed, one can 
proceed with the source-location process. This is illustrated 
here by using the fracture of a glass capillary as a simulated 
AE surce at an arbitrary source location. The advantages of 
this source include its broad bandwidth, high excitation en- 
ergy, and unidirectional radiation characteristics. From the 
recorded transient waveforms, the start of the detected sig- 
nals at the different stations are referenced. A set of charac- 

teristic waveforms is shown in Fig. 5. From these, differ- 
ences in the time of flight of the quasilongitudinal wave 
arrivals, Atp (km), i.e., terms ofEq. ( 13 ), are computed, and 
the recovery of the location of the simulated source location 
is made through the simplified two-dimensional version of 
the optimization algorithm. To ascertain if the results would 
differ if the material was elastically isotropic and anisotrop- 
ic, the algorithm was run twice, using for the isotropic case, 
the supplementary relationships 

C22 = ell , C66 = (Cii -- C•2)/2. (18) 

50.8 mm 

FIG. 4. Geometry for the calibration procedure. 

Some experimental results are collected in Table XI for 
12 different locations, all of them situated in the upper right 
quadrant of Fig. 4. These results clearly show that the local- 
ization of the pointlike acoustic emission source is correctly 
done in most of the cases. Furthermore, the results are sys- 
tematically better when the material is assumed to be trans- 
versely isotropic instead of isotropic. It is noted that, in some 
cases, there is no convergence when the material was as- 
sumed to be isotropic. Generally, the convergence is more 
precise when the source is located inside of the circular array 
of sensors, as shown in the last four entries of Table XI. This 
trend is in agreement with the results obtained by using the 
two-dimensional numerical simulation (Table III). On the 
other hand, for some locations, far removed from the center 
of the array (e.g., the first three entries in Table XI), the 
convergence may be difficult to obtain. In such a case, cor- 
rections must be included in the treatment of the data to 

insure a proper convergence. For these remote areas, several 
factors are detrimental to the accuracy of the recovered 
source location. These include the pronounced geometric 
dispersion of the signals and the attenuation and dissipation 
of the bulk modes, as shown in Fig. 5. The amplitude of the 
quasilongitudinal bulk mode is negligible when compared to 
the Lamb waves, 2• especially for sensors in the farfield of a 
source where the signal strength of the bulk modes are of 
small amplitude or vanish. 29'3ø 

Other limitations exist as well. Some of these are a con- 

sequence of the simplifications associated with the two-di- 
mensional representation of the problem, while others are 
related to the instrumentation that has been used. A wave- 

form digitizer operating at 3 MHz provides a 0.3-/zs time 
resolution over a characteristic 30-/zs time delay difference, 
or 1% uncertainty of presision. In such a case, when four 
sensors are used, and when R = 2d, corresponding to the first 
three entries in Table XI, the errors in the source-location 
process might be as high as 5% or worse as was shown in 
Ref. 15. 

Although the simulated source has been kept distant 
from any sensor, the propagation of the elastic waves, during 
the calibration procedure as well as during the source-loca- 
tion process, occurs in nonprincipal planes. Hence, in a cor- 
rect procedure, one should include the two remaining elastic 
constants, C13 and C44 , with C44 • ( Cll -- C13)/2 and com- 
pute the eigenvalues of the Green-Christoffel tensor, as was 
done for the full three-dimensional problem. 

IV. CONCLUSIONS 

We have described in this paper a procedure for finding 
an efficient solution to the problem,of locating a source of 
acoustic emission in an anisotropic plate. In some cases, 
which were demonstrated with experiments, the source-lo- 
cation problem can be treated as a two-dimensional situa- 
tion. However, in the more general case, a more realistic 
approach is to deal with the full three-dimensional problem, 
which implies several restrictions. These include the follow- 
ing. (1) The measurements are made in a homogeneous, 
elastic solid. (2) The directions of the principal acoustic axes 
in the specimen must be known a priori, and knowledge of 
the elastic constants must be known or determined in a cali- 
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FIG. 5. Set of detected waveforms--fiberglass/epoxy specimen. 

bration experiment. (3) When the propagation is in non- 
principal planes, the eigenvalues of the Green-Christoffel 
tensor must be determined to obtain the wave speeds of the 
quasimodes. (4) The differences of time delays of particular 
wave modes must be accurately determined. The require- 
ments are for these to be measured to within 0.1/•s when 
only the range of the source and its orientation in a plane are 
sought. The time differences need to be measured with ns 
resolution when the third coordinate of a source is to be 

determined. Despite the above restrictions and limitations, 
the method we have described is expected to be useful for 

TABLE XI. Experimental results--comparison of the convergence for an- 
isotropic/isotropic hypothesis. 

Real position Anisotropic Isotropic 

R(mm) a(deg) R(mm) a(deg) R(mm) a(deg) 

107.77 45.00 116.13 43.42 Divergence 
91.58 33.69 90.44 29.09 85.28 28.59 

91.58 56.31 91.04 53.84 Divergence 
80.32 18.44 87.70 14.09 67.76 16.90 

80.32 71.56 81.31 67.38 Divergence 
76.20 0.00 80.08 0.12 59.78 0.15 

76.20 90.00 86.21 88.16 186.41 88.17 

71.84 45.00 66.98 44.45 Divergence 
50.80 0.00 53.67 0.07 43.95 0.09 

50.80 90.00 51.34 88.94 69.10 89.47 

25.40 0.00 25.59 0.15 22.91 0.21 

25.40 90.00 25.68 89.20 30.84 89.47 

monitoring the progression of failure in a composite struc- 
ture. 

Extensions of this work will include its application to 
other specimen geometries, as well as other sensor distribu- 
tions. Of special interest might be the two orthogonal lines of 
sensors geometry. For location of pointlike AE sources in 
very thin plates or in thin layers, numerical schemes similar 
to those described in this paper may be based on arrival time 
data of Lamb waves, pseudo-Rayleigh, or Love waves. A 
reliable solution of the three-dimensional source-location 

problem is best obtained from measurements in thick plates. 
That is, it is not possible to reliably determine the through- 
thickness coordinate of an AE source in a very thin layer, 
that is, one which is only a few/•m thick. 
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