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INTRODUCTION 

Karal and Keller [1] developed the geometrical acoustics for wave propagation in a 

heterogeneous isotropic medium, generally adopting the methods used in geometrical 

optics [2,3]. It is very difficult to find a solution for wave propagation in a heterogeneous 

anisotropic medium. Here, instead of finding an exact solution, we extend the geometrical 

acoustics to a heterogeneous anisotropic medium to untangle the behavior of wave fronts 

spreading into an undisturbed region. The eikonal equation which contains information of 

the phase and group velocities, along with the transport equation which governs the 

amplitude of propagating waves, are derived. For a one-dimensionally heterogeneous 

anisotropic solid, wave propagation is two dimensional and it is possible to obtain closed­

form analytic formulas for the ray path and travel time of a ray. These formulas are applied 

to find the path and travel time of rays generated from a pointlike source and detected by a 

small detector. The predicted arrival times agree well with observed values. 

THEORY 

Consider the following wave equation of hyperbolic type with no damping 

(i,j,k,l = 1,2,3) (1) 
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where Cijkl are the elastic constants of a solid medium, p is the density, r represents a space 

coordinate, t is a time variable, Xj denotes jth component of r, and u is a displacement of 
wave motion. The solution ofEq. (1) in general comprises evolution of cone t = 't(r) in the 

four-dimensional space-time. We consider a wave front surface cp(r,t) = t- 't(r) = 0 

moving along the characteristic curves called the rays in the space-time. The displacement 
u undergoes a sudden jump at the wave front cp = O. The discontinuity singularities in the 

Fourier analysis consist of high frequency components and the behaviors in geometrical 

acoustics hold valid in the high-frequency approximation. 

The projection of cp(r,t) at a particular time to onto the space domain is a conical 

surface called the wave front 't(r) = to, which can be physically interpreted as the arrival 

time of the wave emanating from a source at origin to reach a point r. The projection of 
't(r) = to onto the two dimensional xy plane is a wave front curve whose schematics is 

drawn in Figure 1 at times t and t + dt., where the directions of wave normal and ray are 

specified by unit vectors n and I, respectively. The projection of the characteristic curves 

or rays onto the xy plane is also shown in the figure. Let's denote the phase velocity of a 
wave surface 't(r) moving along the direction of wave normal n by v and denote the 

inverse phase velocity or slowness by p, which is expressed as p =n/v=V'f(r). The group 

velocity Vg=dr/dt or the velocity of a ray, phase velocity, and slowness are related by the 
relations Vg·n=v and Vg·V'f=Vg·p=l. 

In the region inside 't(x,y) = t, cp> 0 and outside 't(x,y) = t, cp < O. 't(x,y) = t or the wave 

y 

n 

~~~--~~---------HX 

x 
Figure 1. Two wave surfaces at times t and t + dt with directions of wave normal and ray. 
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front cp(r,t) = 0 marks a boundary between a disturbed region (cp > 0) and an undisturbed 

region (cp < 0). Discontinuities in u suddenly take place at the boundary cp( r, t) = O. We 

seek an ansatz or a trial solution 

U= An (r)Sn( cp), (n=0,1,2,··00) (2) 

where Sn( cp) satisfies the following relation 

(3) 

EIKONAL AND TRANSPORT EQUATIONS 

We write Ui (i = 1,2,3) component in Eq. (2) as Ui = Ani(r) Sn[ cp(r,t)], denote a derivative 

of Q with respect to a spatial variable Xj by Q,j (j = 1,2,3) and express a time derivative of 

Q as Q" where Q is an arbitrary differentiable variable. Substituting Eq. (2) into Eq. (1) 

and using Eq. (3), one obtains 

Note that Cp,j= - 'f,j; CPt= 1; CPff = O. For n = 0 in Eq. (4), the coefficient of S-2 is required 

to be zero, resulting in 

(5) 

(6) 

Eqs. (5) and (6) are the equations of slowness surface and phase velocity, respectively. 
The first part of Eq. (5) involving the wave front f is known as the eikonal equation in 
geometrical acoustics. It can be readily shown from Vg· Vf= Vg ·P=1. and Eq. (5) that 

V 8 = V pA / (p . V p A), which indicates that the direction of local group velocity or ray is 

normal to the slowness surface at that local point. 

For n = 0 in Eq. (4), the coefficient of S-l = 0 yields 

(7) 
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The above equation is known as the transport equation governing the amplitude of an 

elastic wave. From the requirement that the coefficient of Sn_1 = 0, we proceed in a similar 

way to obtain the transport equation for n ~ 1 

(Cijkl Pit A.u: +Cijkl (Pi .4.k.1 + P, A.u:.i )= Cij/d ~n-I)k.li + Cij/d.i ~n-I)k./, (n ~ 1) (8) 

For detail of the derivation of Eqs. (4)-(8) refer to Ref. 4. 

WA VB PROPAGATION IN TWO DIMENSIONS 

Eq. (5) is a form of the nonlinear ftrst-order partial differential equation and it is very 

difficult to obtain its solution in the general direction of propagation. However, when the 
elastic constants Cijkland the density p are the functions of one space variable, say x, it can 

be shown that the wave normals n or the slowness p are confined to a plane parallel to the x 
axis [4] and that the Snell's refraction law holds along the ray path. Denoting the angles 
between n and the x direction at various points by OJ (i = 0,1,2,3 ... ), the Snell's law can be 

written as 

sin eo sin 01 sin O2 h( ) --= --= --= ... = constant. (9) 
Vo VI v2 

We turn our attention to the wave propagation in the xy plane where both wave normals 

n and ray directions I are conftned, as shown in Fig. 1. The directions of n and I are 

specifted by angles 0 and tJ, respectively measured to the x axis. We deftne an angle 
iP == t'} - (}, which is negative in Fig. 1. We also denote a differential arc length along the 

ray path between two wave fronts 't' = t and 't' + d't' = t + dt as ds and a distance along the 

direction of a wave normal between two wave fronts by d1]. d1] = V dt = ds cos iP. The 

slowness surface A in a two dimensional case can be expressed as 

A =pv-l =0. (10) 

Referring to Ref. 4 and denoting v' by av/ ao, the travel time 't' and ray path of a wave 

which emanates from a source at the initial point (xo,Yo) and arrives at a point (XhYI), are 

given by 

Jx, cos iP JX. dx 
't'= dx= 

x, vcos( iP+ 0) x, vcos 0- v' sin 0 ' 
(11) 

_ IX. vsinO+v'cos°dx YI-Yo+ .' 
" vcosO-v'smO 

(12) 
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WAVE PROPAGATION IN A WAVY COMPOSITE MATERIAL 

A wavy composite material is fabricated where reinforcing graphite fibers are imbedded 

in a wavy pattern in epoxy matrix. The fiber waviness is confined in the xy plane with the 

mean fiber direction along the x axis. The waviness is characterized by a sine wave form 

with amplitude 2 mm and periodic length 40 mm. A local fiber direction is specified by the 
angle PI the x axis makes to the fiber and it satisfies the relation 

tanPf =( 1t'/IO)cos{ nx/20). (13) 

The wavy composite is uniform along both z and y directions. As a result, both anisotropy 

and heterogeneity of the wavy composite is a function of one variable x only. We expect 

from the results of the previous section that the wave normals which are initially directed in 

the xy plane are confined on the xy plane and the Snell's law Eq. (9) holds valid for the 

wavy composite. A composite material which has the fibers running straight in the x 
direction ideally has transversely isotropic symmetry about the x axis. However, because 

of a less-than-ideal fabrication procedure, it is better characterized as possessing weak 

orthorhombic symmetry with very close proximity to transversely isotropy. Let's denote 

the x, y, and z axes by the directions 1, 2, and 3, respectively. Then, the composite 

specimen with straight fibers aligned in the x direction is characterized by nine elastic 

constants, which are measured to be ClI = 130.3 GPa, C22 = 11.00 GPa, C33 = 12.46 GPa, 

C44 = 2.95 GPa, C55 = 5.47 GPa, C66 = 4.96 GPa, C12 = 6.01 GPa, Cl3 = 1.04 GPa, andC23 = 
6.27 GPa. The density of the wavy composite is 1524 kglm3• 

Consider a small element of the wavy composite at a typical local point (x,yo,zo)' The 

small local element is considered to have orthorhombic symmetry whose x and y symmetry 
axes are rotated about the third symmetry axis ZoZ by the angle Pf from the x axis. Then, 

the angle a which the wave normal n makes from the local fiber direction is 

a(x,e)= e-Pf = e-tan-1(.!E...cos 1t'x), 
10 20 

(14) 

where e is the angle between the directions of n and x axis. The eikonal and phase velocity 

equations, Eqs. (5) and (6), hold at a local point (x,YmZo) for waves propagating with wave 

normal n. For the waves propagating in the xy plane, these equations are factored into three 

modes whose vibration directions are mutually perpendicular to each other: shear­

horizontally (SH) polarized pure transverse (PT) mode vibrating in the z direction, 

quasilongitudinal (QL) mode and quasitransverse (QT) mode. The QL and QT modes are 

both polarized in the xy plane. The SH polarized PT mode is uncoupled from the QL and 

QT modes. We first deal with the QL and QT modes. 
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Quasilongitudinal and Quasitransverse Modes 

For simplicity of notation we introduce the following identities: Cll± = Cll± C66 , C22± = 

C22± C66 , and Cl2±=C12± C66• The phase velocities of the QL and QT modes are given by [5] 

(15) 

where a is defined in Eq. (14), the upper and lower signs in ± in front of.fi5 correspond to 

the QL and QT modes, respectively, and 

(c 2 C . 2 )2 4C2 • 2 2 D= ll_COS a- 22_sm a + 12+sm acos a. (16) 

Differentiating Eq. (15) with respect to e, one obtains 

Substitution of the Snell's law Eq. (9) into Eq. (15) yields 

(18) 

where h = sinelv is the Snell's law constant. Consider a case in which rays are initiating 

from a broadband source in virtually every direction inside the specimen. We choose an 

arbitrary ray whose wave normal at the source is directed at an angle eo from the x 
direction. The fiber direction f3! at the source is obtained from Eq. (13). Then, we 

calculate the initial velocity Vo corresponding to the wave normal eo via Eq. (15) to 

determine the Snell's law constant h from Eq. (9). For a given x, the fiber angle f3! can be 

calculated via Eq. (13) and from Eq. (18), one obtains the solutions for e, sine, and cose. 

Then the values of v and v' are obtained from Eqs. (15) and (17). Thus, one can calculate 

the values of sine, cose, and v and v' at many different values of x to determine the 

arrival time T and ray path through Eqs. (11) and (12). One can repeat this procedure for 

rays with various initial wave normal directions and at different source points. 

Pure Transverse Mode 

The phase velocity v of the PT mode is given by [5] 

(19) 
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Arrival Times with a Source at 0 mm 
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Figure 2. Comparison of the arrival times of the QL mode between theory and experiment. 

Determination of the arrival time and ray path of a wave with initial wave normal eo at the 

source can be carried out in a similar way to that described in the case of the QL and QT 

modes. In the special case of h = sine =0, the integrals for the arrival time and ray path are 

greatly simplified for all three modes. 
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Figure 3. Computed ray paths of the QL mode with a source at x = 0 mm. 
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RESULTS 

The fabricated wavy composites are flatly machined and polished with two opposite flat 

faces parallel to the mean fiber direction, x axis. A pointlike source is generated by 

breaking a glass capillary of 0.1 mm diameter with a razor blade on the 28 Jlm thick, 

piezoelectric polyvinylidene fluoride (PVDF) film, which was mounted on the flat surface 

of the wavy composite. The generated elastic waves propagate in virtually every direction 

inside the specimen and are detected by a small piezoelectric transducer on the flat side 

opposite to the source's. The distance between the flat surfaces is 15.93 mm. Figure 2 

shows comparison of the arrival time data of the QL mode between those calculated 

according to Eq. (11) and those measured, when the source is located at origin and the 

elastic waves are detected at various positions. Good agreement between theory and 

experiment is found in the figure. The theoretical ray paths corresponding to the above 

experimental configuration are calculated via Eq. (12) and are displayed in Figure 3. For 

other combinations of source/detector positions refer to Ref. 6. 
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